Notorious Huge

Level pending

The number B I G = 1 × 22 × 333 × 4444 × ( ) × 999999999 BIG = 1 \times 22 \times 333 \times 4444 \times (\cdots) \times 999999999 belongs in the interval [ 1 0 n 1 , 1 0 n ] [10^{n-1}, 10^{n}] , where n n is a positive integer.

Evaluate n n .


The answer is 42.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Dec 23, 2013

B I G = 1 × 22 × 333 × × 9 9 nine 9 ’s = ( 1 9 × 9 ) × ( 2 9 × 99 ) × ( 3 9 × 999 ) × × ( 9 9 nine 9 ’s ) = 9 ! 9 9 ( 1 0 1 1 ) ( 1 0 2 1 ) ( 1 0 3 1 ) ( 1 0 9 1 ) = 8 ! 9 8 1 0 1 + 2 + 3 + + 9 ( 1 1 1 0 1 ) ( 1 1 1 0 2 ) ( 1 1 1 0 3 ) ( 1 1 1 0 9 ) = 8 ! 9 8 1 0 45 ( 1 1 1 0 1 ) ( 1 1 1 0 2 ) ( 1 1 1 0 3 ) ( 1 1 1 0 9 ) \begin{aligned} BIG & = & 1 \times 22 \times 333 \times \ldots \times \underbrace{9 \ldots 9}_{ \text{nine} \space 9\text{'s} } \\ & = & \left ( \frac {1}{9} \times 9 \right ) \times \left ( \frac {2}{9} \times 99 \right ) \times \left ( \frac {3}{9} \times 999 \right ) \times \ldots \times \left ( \underbrace{9 \ldots 9}_{ \text{nine} \space 9\text{'s} } \right ) \\ & = & \frac {9!}{9^9} \left ( 10^1 - 1 \right ) \left ( 10^2 - 1 \right ) \left ( 10^3 - 1 \right ) \cdot \cdot \cdot \left ( 10^9 - 1 \right ) \\ & = & \frac {8!}{9^8} 10^{1+2+3+ \ldots + 9} \left ( 1 - \frac {1}{10^1} \right ) \left ( 1 - \frac {1}{10^2} \right ) \left ( 1 - \frac {1}{10^3} \right ) \cdot \cdot \cdot \left ( 1 - \frac {1}{10^9} \right ) \\ & = & \frac {8!}{9^8} 10^{45} \left ( 1 - \frac {1}{10^1} \right ) \left ( 1 - \frac {1}{10^2} \right ) \left ( 1 - \frac {1}{10^3} \right ) \cdot \cdot \cdot \left ( 1 - \frac {1}{10^9} \right ) \\ \end{aligned}

Because ( 1 1 1 0 1 ) = 0.9 \left ( 1 - \frac {1}{10^1} \right ) = 0.9 , ( 1 1 1 0 2 ) = 0.99 \left ( 1 - \frac {1}{10^2} \right ) = 0.99 , and the following terms 1 \approx 1 , the product of the nine terms is approximately 0.9 × 0.99 0.9 \times 0.99

Continue:

B I G 8 ! 9 8 1 0 45 ( 0.9 ) ( 0.99 ) = 8 ! 9 6 1 0 44 0.11 = 8 ! 9 5 1 0 44 0.11 9 8 ! 9 5 1 0 44 1 0 2 = 8 ! 9 5 1 0 42 \begin{aligned} BIG & \approx & \frac {8!}{9^8} 10^{45} (0.9) (0.99) \\ & = & \frac {8!}{9^6} \cdot 10^{44} \cdot 0.11 \\ & = & \frac {8!}{9^5} \cdot 10^{44} \cdot \frac {0.11}{9} \\ & \approx & \frac {8!}{9^5} \cdot 10^{44} \cdot 10^{-2} \\ & = & \frac {8!}{9^5} \cdot 10^{42} \\ \end{aligned}

Because 1 2 < 8 ! 9 5 < 1 \frac {1}{2} < \frac {8!}{9^5} < 1

B I G = 1 0 42 α BIG = 10^{42 - \alpha} , for a certain fractional part 1 2 < α < 1 \frac {1}{2} < \alpha < 1

Thus, n = 42 n = \boxed{42}

Very nice approach!

What if we didn't stop at 9 9 ? Calculating this same thing, but to a bigger number:

H U G E = B I G × 10 10 10 times × 11 11 11 times × ( ) × 99 99 99 times HUGE = BIG \times \underbrace{10\cdots10}_{10 \; \text{times}} \times \underbrace{11\cdots11}_{11 \; \text{times}} \times (\cdots) \times \underbrace{99\cdots99}_{99 \; \text{times}}

Could we generalize the result for those new multipliers?

Guilherme Dela Corte - 7 years, 5 months ago

We can rewrite the number B I G BIG into 9 ! ( 1 × 11 × ( ) × 111111111 ) 9! (1 \times 11 \times (\cdots) \times 111111111) .

Let's approximate every so-called group to a power of ten:

9 ! = 362880 3.63 × 1 0 5 9! = 362880 \approx 3.63 \times 10^5

111111111 11 = 1222222221 1.2 × 1 0 9 111111111*11=1222222221 \approx 1.2 \times 10^9 11111111 111 = 1233333321 1.2 × 1 0 9 11111111*111=1233333321 \approx 1.2 \times 10^9 1111111 1111 = 1234444321 1.2 × 1 0 9 1111111*1111=1234444321 \approx 1.2 \times 10^9 111111 11111 = 1234554321 1.2 × 1 0 9 111111*11111=1234554321 \approx 1.2 \times 10^9

The product of all these five groups is 3.63 × ( 1.2 ) 4 × 1 0 41 7.52 × 1 0 41 \approx 3.63 \times (1.2)^4 \times 10^{41} \approx 7.52 \times 10^{41} , thus belonging in the interval [ 1 0 41 , 1 0 42 ] [10^{41}, 10^{42}] , which means n = 42. \boxed{n=42.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...