Notorious Trigonometry

Geometry Level 3

tan 9 tan 2 7 tan 6 3 + tan 8 1 = ? \tan 9^{\circ} -\tan 27^{\circ} -\tan 63^{\circ} +\tan 81^{\circ} = ?

Note:

  • This should be solved without a calculator.
  • This problem is not original.

Try more of my fundamental problems here .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Donglin Loo
Jan 26, 2018

tan 9 tan 2 7 tan 6 3 + tan 8 1 \tan 9^{\circ} -\tan 27^{\circ} -\tan63^{\circ} +\tan 81^{\circ}

= tan 9 tan 2 7 cot 2 7 + tan 9 =\tan 9^{\circ} -\tan 27^{\circ} -\cot 27^{\circ} +\tan 9^{\circ}

= ( tan 9 + cot 9 ) ( tan 2 7 cot 2 7 ) =(\tan 9^{\circ} +\cot 9^{\circ}) -(\tan 27^{\circ} -\cot 27^{\circ})

= ( sin 9 cos 9 + cos 9 sin 9 ) ( sin 2 7 cos 2 7 + cos 2 7 sin 2 7 ) =(\cfrac{\sin 9^{\circ}}{\cos 9^{\circ}} +\cfrac{\cos 9^{\circ}}{\sin 9^{\circ}}) -(\cfrac{\sin 27^{\circ}}{\cos 27^{\circ}} +\cfrac{\cos 27^{\circ}}{\sin 27^{\circ}})

= ( sin 9 ) 2 + ( cos 9 ) 2 sin 9 cos 9 ( sin 2 7 ) 2 + ( cos 2 7 ) 2 sin 2 7 cos 2 7 =\cfrac{(\sin 9^{\circ})^{2}+(\cos 9^{\circ})^{2}}{\sin 9^{\circ}\cos 9^{\circ}}-\cfrac{(\sin 27^{\circ})^{2}+(\cos 27^{\circ})^{2}}{\sin 27^{\circ}\cos 27^{\circ}}

= 1 sin 9 cos 9 1 sin 2 7 cos 2 7 =\cfrac{1}{\sin 9^{\circ}\cos 9^{\circ}}-\cfrac{1}{\sin 27^{\circ}\cos 27^{\circ}}

= 2 2 sin 9 cos 9 2 2 s i n 2 7 cos 2 7 =\cfrac{2}{2\sin 9^{\circ}\cos 9^{\circ}}-\cfrac{2}{2sin 27^{\circ}\cos 27^{\circ}}

= 2 sin 1 8 2 sin 5 4 =\cfrac{2}{\sin 18^{\circ}}-\cfrac{2}{\sin 54^{\circ}}

= 2 ( sin 5 4 sin 1 8 ) sin 5 4 sin 1 8 =\cfrac{2(\sin 54^{\circ}-\sin 18^{\circ})}{\sin 54^{\circ}\sin 18^{\circ}}

= 2 ( 2 cos 3 6 sin 1 8 ) sin 5 4 sin 1 8 =\cfrac{2(2\cos 36^{\circ} \sin 18^{\circ})}{\sin 54^{\circ}\sin 18^{\circ}}

= 4 cos 3 6 sin 5 4 =\cfrac{4\cos 36^{\circ}}{\sin 54^{\circ}}

cos 3 6 = sin ( 9 0 3 6 ) = sin 5 4 \cos 36^{\circ}=\sin (90^{\circ}-36^{\circ})=\sin 54^{\circ}

cos 3 6 sin 5 4 = 1 \cfrac{\cos 36^{\circ}}{\sin 54^{\circ}}=1

So, tan 9 tan 2 7 tan 6 3 + tan 8 1 = 4 ( 1 ) = 4 \tan 9^{\circ} -\tan 27^{\circ} -\tan63^{\circ} +\tan 81^{\circ}=4(1)=4

Chew-Seong Cheong
Jun 25, 2018

X = tan 9 tan 2 7 tan 6 3 + tan 8 1 Since tan ( 9 0 θ ) = cot θ = 1 tan θ = tan 9 + 1 tan 9 tan 2 7 1 tan 2 7 = sin 9 cos 9 + cos 9 sin 9 sin 2 7 cos 2 7 cos 2 7 sin 2 7 = sin 2 9 + cos 2 9 sin 9 cos 9 sin 2 2 7 + cos 2 2 7 sin 2 7 cos 2 7 As sin 2 θ + cos 2 θ = 1 = 1 sin 9 cos 9 1 sin 2 7 cos 2 7 Also sin 2 θ = 2 sin θ cos θ = 2 sin 1 8 2 sin 5 4 = 2 ( sin 5 4 sin 1 8 ) sin 1 8 sin 5 4 By sin 3 θ = 3 sin θ 4 sin 3 θ = 2 ( 3 sin 1 8 4 sin 3 1 8 sin 1 8 ) sin 1 8 sin 5 4 = 4 ( 1 2 sin 2 1 8 ) sin 5 4 By cos 2 θ = 1 2 sin 2 θ = 4 cos 3 6 cos 3 6 Since sin ( 9 0 θ ) = cos θ = 4 \begin{aligned} X & = \tan 9^\circ - \tan 27^\circ - {\color{#3D99F6}\tan 63^\circ} + \color{#3D99F6} \tan 81^\circ & \small \color{#3D99F6} \text{Since }\tan (90^\circ - \theta) = \cot \theta = \frac 1{\tan \theta} \\ & = \tan 9^\circ + {\color{#3D99F6} \frac 1{\tan 9^\circ}} - \tan 27^\circ - \color{#3D99F6}\frac 1{\tan 27^\circ} \\ & = \frac {\sin 9^\circ}{\cos 9^\circ} + \frac {\cos 9^\circ}{\sin 9^\circ} - \frac {\sin 27^\circ}{\cos 27^\circ} - \frac {\cos 27^\circ}{\sin 27^\circ} \\ & = \frac {\sin^2 9^\circ + \cos^2 9^\circ}{\sin 9^\circ \cos 9^\circ} - \frac {\sin^2 27^\circ + \cos^2 27^\circ}{\sin 27^\circ \cos 27^\circ} & \small \color{#3D99F6} \text{As } \sin^2 \theta + \cos^2 \theta = 1 \\ & = \frac 1{\sin 9^\circ \cos 9^\circ} - \frac 1{\sin 27^\circ \cos 27^\circ} & \small \color{#3D99F6} \text{Also } \sin 2 \theta = 2\sin \theta \cos \theta \\ & = \frac 2{\sin 18^\circ} - \frac 2{\sin 54^\circ} \\ & = \frac {2({\color{#3D99F6}\sin 54^\circ} - \sin 18^\circ)}{\sin 18^\circ \sin 54^\circ} & \small \color{#3D99F6} \text{By } \sin 3 \theta = 3\sin \theta - 4 \sin^3 \theta \\ & = \frac {2({\color{#3D99F6}3\sin 18^\circ - 4\sin^3 18^\circ} - \sin 18^\circ)}{\sin 18^\circ \sin 54^\circ} \\ & = \frac {4\color{#3D99F6}(1 - 2\sin^2 18^\circ)}{\color{#D61F06}\sin 54^\circ} & \small \color{#3D99F6} \text{By } \cos 2 \theta = 1-2\sin^2 \theta \\ & = \frac {4\color{#3D99F6}\cos 36^\circ}{\color{#D61F06}\cos 36^\circ} & \small \color{#D61F06} \text{Since }\sin (90^\circ - \theta) = \cos \theta \\ & = \boxed{4} \end{aligned}

Nicely done👍

donglin loo - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...