Now how do I do this?

Geometry Level 4

Let area of the triangle formed by the points ( b , c ) (b,c) , ( c , a ) (c,a) and ( a , b ) (a,b) as vertices be Δ \Delta and the area of the triangle whose veritces are ( a c b 2 , a b c 2 ) (ac-b^2,ab-c^2) , ( b a c 2 , b c a 2 ) (ba-c^2,bc-a^2) and ( c b a 2 , c a b 2 ) (cb-a^2,ca-b^2) be Δ 1 \Delta_1 . Also define z z as z = a b c b c a c a b z = \begin{vmatrix} a&b&c \\ b&c&a \\ c&a&b \end{vmatrix} Find the value of z 2 Δ Δ 1 \sqrt{z^2\cdot \dfrac{\Delta}{\Delta_1}}

Details: Take a = 3 a=3 , b = 5 b=5 , c = 8 c=8 .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kishore S. Shenoy
Dec 24, 2016

Relevant wiki: Linear Transformations

Area of triangles, Δ = z = b c 1 c a 1 a b 1 \Delta = z = \begin{vmatrix} b&c&1\\c&a&1\\a&b&1 \end{vmatrix}

Δ 1 = a c b 2 a b c 2 1 b a c 2 b c a 2 1 c b a 2 c a b 2 1 \Delta_1 = \begin{vmatrix} ac-b^2& ab-c^2&1\\ba-c^2& bc-a^2&1\\cb-a^2&ca-b^2&1 \end{vmatrix}

Now let's define a matrix A, [ b c 1 c a 1 a b 1 ] A = [ a c b 2 a b c 2 1 b a c 2 b c a 2 1 c b a 2 c a b 2 1 ] \begin{bmatrix} b&c&1\\c&a&1\\a&b&1 \end{bmatrix}\cdot A = \begin{bmatrix} ac-b^2& ab-c^2&1\\ba-c^2& bc-a^2&1\\cb-a^2&ca-b^2&1 \end{bmatrix}

Applying Row Transformation, R 1 R 1 R 3 R 2 R 2 R 3 R_1 \to R_1-R_3\\R_2 \to R_2-R_3

[ b a c b 0 c a a b 0 a b 1 ] A = ( a + b + c ) [ a b c b 0 c a b a 0 c b a 2 a + b + c c a b 2 a + b + c 1 a + b + c ] \begin{bmatrix} b-a&c-b&0\\c-a&a-b&0\\a&b&1 \end{bmatrix}\cdot A = (a+b+c)\begin{bmatrix} a-b& c-b&0\\c-a& b-a&0\\\dfrac{cb-a^2}{a+b+c}&\dfrac{ca-b^2}{a+b+c}&\dfrac1{a+b+c} \end{bmatrix}

Taking determinant, d e t ( A ) = ( a + b + c ) 2 Δ 1 Δ = ( a + b + c ) 2 \mathrm{det}(A) = (a+b+c)^2\\\Rightarrow \dfrac{\Delta_1}{\Delta}=(a+b+c)^2

For z z , z = 3 a b c a 3 b 3 c 3 = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) z = 3abc-a^3-b^3-c^3 = -(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

So, the final answer turns out to be A n s . = 1 2 [ ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ] \mathrm{Ans.} = \dfrac12 \left[(a-b)^2+(b-c)^2+(c-a)^2\right]

Numerically, 4 + 9 + 25 2 = 19 \color{#3D99F6}{\dfrac{4+9+25}2 = \boxed{19}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...