Let area of the triangle formed by the points ( b , c ) , ( c , a ) and ( a , b ) as vertices be Δ and the area of the triangle whose veritces are ( a c − b 2 , a b − c 2 ) , ( b a − c 2 , b c − a 2 ) and ( c b − a 2 , c a − b 2 ) be Δ 1 . Also define z as z = ∣ ∣ ∣ ∣ ∣ ∣ a b c b c a c a b ∣ ∣ ∣ ∣ ∣ ∣ Find the value of z 2 ⋅ Δ 1 Δ
Details: Take a = 3 , b = 5 , c = 8 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Linear Transformations
Area of triangles, Δ = z = ∣ ∣ ∣ ∣ ∣ ∣ b c a c a b 1 1 1 ∣ ∣ ∣ ∣ ∣ ∣
Δ 1 = ∣ ∣ ∣ ∣ ∣ ∣ a c − b 2 b a − c 2 c b − a 2 a b − c 2 b c − a 2 c a − b 2 1 1 1 ∣ ∣ ∣ ∣ ∣ ∣
Now let's define a matrix A, ⎣ ⎡ b c a c a b 1 1 1 ⎦ ⎤ ⋅ A = ⎣ ⎡ a c − b 2 b a − c 2 c b − a 2 a b − c 2 b c − a 2 c a − b 2 1 1 1 ⎦ ⎤
Applying Row Transformation, R 1 → R 1 − R 3 R 2 → R 2 − R 3
⎣ ⎡ b − a c − a a c − b a − b b 0 0 1 ⎦ ⎤ ⋅ A = ( a + b + c ) ⎣ ⎢ ⎡ a − b c − a a + b + c c b − a 2 c − b b − a a + b + c c a − b 2 0 0 a + b + c 1 ⎦ ⎥ ⎤
Taking determinant, d e t ( A ) = ( a + b + c ) 2 ⇒ Δ Δ 1 = ( a + b + c ) 2
For z , z = 3 a b c − a 3 − b 3 − c 3 = − ( a + b + c ) ( a 2 + b 2 + c 2 − a b − b c − c a )
So, the final answer turns out to be A n s . = 2 1 [ ( a − b ) 2 + ( b − c ) 2 + ( c − a ) 2 ]
Numerically, 2 4 + 9 + 2 5 = 1 9