Now, just square it

Algebra Level 3

{ a + b + c = a b c 1 a + 1 b + 1 c = 1 \large \begin{cases} a + b + c = -abc \\ \dfrac 1a + \dfrac 1b + \dfrac 1c = 1 \end{cases}

Given the above, where a , b , c 0 a, b, c \ne 0 , find 1 a 2 + 1 b 2 + 1 c 2 \dfrac 1{a^2} + \dfrac 1{b^2} + \dfrac 1{c^2} .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 21, 2016

1 a 2 + 1 b 2 + 1 c 2 = ( 1 a + 1 b + 1 c ) 2 2 ( 1 a b + 1 b c + 1 c a ) Note that 1 a + 1 b + 1 c = 1 = ( 1 ) 2 2 ( a + b + c a b c ) Note that a + b + c = a b c a + b + c a b c = 1 = 1 2 ( 1 ) = 3 \begin{aligned} \frac 1{a^2} + \frac 1{b^2} + \frac 1{c^2} & = \left( \color{#3D99F6}{\frac 1{a} + \frac 1{b} + \frac 1{c}} \right)^2 - 2 \left( \frac 1{ab} + \frac 1{bc} + \frac 1{ca} \right) & \small \color{#3D99F6}{\text{Note that }\frac 1{a} + \frac 1{b} + \frac 1{c} = 1} \\ & = (\color{#3D99F6}{1})^2 - 2 \left(\color{#D61F06}{\frac {a+b+c}{abc}} \right) & \small \color{#D61F06}{\text{Note that } a+b+c = - abc \implies \frac {a+b+c}{abc} = -1} \\ & = 1 - 2(\color{#D61F06}{-1}) \\ & = \boxed{3} \end{aligned}

Classic square. Excellent and magnificent.

Ian Limarta - 4 years, 10 months ago

@Chew-Seong Cheong I think you made some mistakes that there is no need for the square at the second line (a+b+c)/abc

Isaac YIU Math Studio - 1 year, 10 months ago

Log in to reply

Thanks, I have amended it,

Chew-Seong Cheong - 1 year, 10 months ago
Akash Shukla
Jul 21, 2016

a + b + c = a b c a+b+c=-abc

Dividing a b c abc on both the sides.

1 a b + 1 b c + 1 a c = 1.......... ( 1 ) \dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac} = -1..........(1)

1 a + 1 b + 1 c = 1 \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1

Squaring on both sides,

1 a 2 + 1 b 2 + 1 c 2 + 2 ( 1 a b + 1 b c + 1 a c ) = 1 \dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=1

1 a 2 + 1 b 2 + 1 c 2 + 1 b 2 2 = 1 \dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{1}{b^2}-2=1 ...................from(1)

1 a 2 + 1 b 2 + 1 c 2 = 3 \therefore\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\boxed{3}

Ravi Dwivedi
Sep 13, 2015

1 a + 1 b + 1 c = 1 \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1

Squaring both sides yields 1 a 2 + 1 b 2 + 1 c 2 + 2 ( 1 a b + 1 b c + 1 c a ) = 1 \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca})=1 ....(eq 1)

Now it is given that a + b + c = a b c a+b+c=-abc This implies 1 a b = c a + b + c , 1 b c = a a + b + c , 1 c a = b a + b + c \frac{1}{ab}=\frac{-c}{a+b+c} , \frac{1}{bc}=\frac{-a}{a+b+c}, \frac{1}{ca}=\frac{-b}{a+b+c}

Putting these values in above equation (1) we get 1 a 2 + 1 b 2 + 1 c 2 + 2 ( c a + b + c + a a + b + c + b a + b + c ) \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2(\frac{-c}{a+b+c} + \frac{-a}{a+b+c} + \frac{-b}{a+b+c}) =1

1 a 2 + 1 b 2 + 1 c 2 2 a + b + c a + b + c = 1 \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-2\frac{a+b+c}{a+b+c}=1

1 a 2 + 1 b 2 + 1 c 2 2 = 1 \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2} -2 =1

1 a 2 + 1 b 2 + 1 c 2 = 3 \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\boxed{3}

Moderator note:

Nice algebraic manipulation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...