Now that's what i call a series!

Calculus Level 4

If k = 0 k 2 4 k = m n \sum _{ k=0 }^{ \infty }{ \frac { { k }^{ 2 } }{ { 4 }^{ k } } }=\frac m n

where m , n m,n are positive, co-prime integers. Find m + n m+n


The answer is 47.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

n = 0 x n = 1 1 x x 1 \sum_{n=0}^{ \infty } x^{n} = \dfrac{1}{1-x} \quad \forall \quad |x| \leq 1 n = 0 ( d d x x n ) = d d x ( 1 1 x ) n = 0 ( n x n ) = x ( 1 x ) 2 n = 0 d d x ( n x n ) = d d x ( x ( 1 x ) 2 ) n = 0 ( n 2 x n ) = x ( 1 x ) 2 + 2 x ( 1 x ) ( 1 x ) 4 = x + x 2 ( 1 x ) 3 \Rightarrow \sum_{n=0}^{ \infty } ( \frac{d}{dx} x^{n} ) = \frac{d}{dx} ( \dfrac{1}{1-x} ) \\ \Rightarrow \sum_{n=0}^{ \infty} ( n \cdot x^{n} ) = \dfrac{x}{ (1-x)^{2} } \\ \Rightarrow \sum_{n=0}^{ \infty} \frac{d}{dx} (n \cdot x^{n} ) = \frac{d}{dx} ( \dfrac{x}{ (1-x)^{2} } ) \\ \Rightarrow \sum_{n=0}^{ \infty} ( n^{2} \cdot x^{n} ) = x\cdot \dfrac{ (1-x)^{2} + 2x\cdot (1-x) }{ (1-x)^{4} } \\= \frac{x+x^{2}}{ (1-x)^{3} }

Well, we just input x = 1 4 x=\frac{1}{4} and we get the answer as 20 27 \dfrac{20}{27} .

So M + N = 20 + 27 = 47 M + N = 20 + 27 = 47

Are you sure that the convergence condition should be x 1 |x|\leq 1 ?

Prasun Biswas - 5 years, 11 months ago

Log in to reply

What happens at x = 1 x = 1 then?

Jake Lai - 5 years, 9 months ago

k = 0 k 2 4 k = k = 1 k 2 4 k = k = 0 ( k + 1 ) 2 4 k + 1 = 1 4 k = 0 k 2 + 2 k + 1 4 k 4 k = 0 k 2 4 k = k = 0 k 2 4 k + k = 0 2 k 4 k + k = 0 1 4 k 3 k = 0 k 2 4 k = 2 k = 0 k 4 k + k = 0 1 4 k \begin{aligned} \sum_{k=0}^\infty {\frac{k^2}{4^k}} & = \sum_{\color{#D61F06}{k=1}}^\infty {\frac{k^2}{4^k}} \\ & = \sum_{\color{#3D99F6}{k=0}}^\infty {\frac{(k+1)^2}{4^{k+1}}} \\ & = \frac{1}{4} \sum_{k=0}^\infty {\frac{k^2+2k+1}{4^k}} \\ \Rightarrow 4 \sum_{k=0}^\infty {\frac{k^2}{4^k}} & = \sum_{k=0}^\infty {\frac{k^2}{4^k}} + \sum_{k=0}^\infty {\frac{2k}{4^k}} + \sum_{k=0}^\infty {\frac{1}{4^k}} \\ \Rightarrow 3 \sum_{k=0}^\infty {\frac{k^2}{4^k}} & = 2 \sum_{k=0}^\infty {\frac{k}{4^k}} + \sum_{k=0}^\infty {\frac{1}{4^k}} \end{aligned}

Similarly,

k = 0 k 4 k = k = 1 k 4 k = k = 0 k + 1 4 k + 1 = 1 4 k = 0 k 4 k + 1 4 k = 0 1 4 k 3 4 k = 0 k 4 k = 1 4 k = 0 1 4 k = 1 4 ( 1 1 1 4 ) = 1 3 k = 0 k 4 k = 4 9 \begin{aligned} \sum_{k=0}^\infty {\frac{k}{4^k}} & = \sum_{k=1}^\infty {\frac{k}{4^k}} = \sum_{k=0}^\infty {\frac{k+1}{4^{k+1}}} = \frac{1}{4} \sum_{k=0}^\infty {\frac{k}{4^k}} + \frac{1}{4} \sum_{k=0}^\infty {\frac{1}{4^k}} \\ \Rightarrow \frac{3}{4} \sum_{k=0}^\infty {\frac{k}{4^k}} & = \frac{1}{4} \sum_{k=0}^\infty {\frac{1}{4^k}} = \frac{1}{4} \left(\frac{1}{1-\frac{1}{4}} \right) = \frac{1}{3} \\ \Rightarrow \sum_{k=0}^\infty {\frac{k}{4^k}} & = \frac{4}{9} \end{aligned}

Now, we have:

3 k = 0 k 2 4 k = 2 k = 0 k 4 k + k = 0 1 4 k = 2 ( 4 9 ) + 4 3 = 20 9 k = 0 k 2 4 k = 20 27 \begin{aligned} \Rightarrow 3 \sum_{k=0}^\infty {\frac{k^2}{4^k}} & = 2 \sum_{k=0}^\infty {\frac{k}{4^k}} + \sum_{k=0}^\infty {\frac{1}{4^k}} = 2 \left(\frac{4}{9} \right) + \frac{4}{3} = \frac{20}{9} \\ \Rightarrow \sum_{k=0}^\infty {\frac{k^2}{4^k}} & = \frac{20}{27} \end{aligned}

M + N = 20 + 27 = 47 \Rightarrow M + N = 20 + 27 = \boxed{47}

Moderator note:

That's a nice way to find k n 4 k \sum {k^n}{ 4^k} , which is reminiscent of the Geometric Progression Sum approach.

Anurag Singh
Dec 1, 2015

S =1/4 +4/16+9/64 ....... S/4. = 1/16 +4/64........ 3S/4 = 1/4 +3 /16+ 5/64.....i 3S/16= 1/16+3/64......ii (ii)-(i) implies 9S/16= 1/4+ 2(1/16+1/64....) ( infinte G.P). It gives us S= 20/27...pretty simple but a useful method i guess...i always liked manipulation....others do have a nice approach too

You can also make recurrent sequence let a n a_n be sum of first n + 1 n+1 terms (include k=0).

a n = a n 1 + n 2 4 n a_n=a_{n-1}+\frac{n^2}{4^n}

Now the solution is:

a n = a n + a n a_n=a_n'+a_n''

a n = C a_n'=C

a n = A n 2 + B n + C 4 n a_n''=\frac{An^2+Bn+C}{4^n}

Solution for A , B , C A, B, C are respectively 1 3 , 8 9 , 20 27 -\frac{1}{3}, -\frac{8}{9}, -\frac{20}{27} .

Putting a 0 = C + a 0 = 0 a_0=C+a_0''=0 you will find

C = 20 27 C=\frac{20}{27}

And now the final expression for a n a_n :

a n = 20 27 1 3 n 2 + 8 9 n + 20 27 4 n a_n=\frac{20}{27}-\frac{\frac{1}{3}n^2+\frac{8}{9}n+\frac{20}{27}}{4^n}

Now letting n n goes to infinity second term goes to zero so the answer is

20 27 \frac{20}{27}

20 + 27 = 47 20+27=47

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...