Now Thats What we call a Summation!

Algebra Level 4

r = 1 r 3 + ( r 2 + 1 ) 2 ( r 4 + r 2 + 1 ) ( r 2 + r ) = a b \large \sum^\infty_{r=1} \frac{r^3+(r^2+1)^2}{(r^4+r^2+1)(r^2+r)} = \frac ab

The equation above holds true for coprime positive integers a a and b b . Find a + b a+b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 10, 2018

S = r = 1 r 3 + ( r 2 + 1 ) 2 ( r 4 + r 2 + 1 ) ( r 2 + r ) = r = 1 r 4 + r 3 + 2 r 2 + 1 ( r 4 + r 2 + 1 ) ( r 2 + r ) = r = 1 ( 1 r ( r + 1 ) + r r 4 + r 2 + 1 ) = r = 1 ( 1 r 1 r + 1 + r ( r 2 r + 1 ) ( r 2 + r + 1 ) ) = 1 1 + r = 1 1 2 ( 1 r 2 r + 1 1 r 2 + r + 1 ) Let s = r + 1 = 1 + 1 2 ( r = 1 1 r 2 r + 1 s = 2 1 s 2 s + 1 ) r 2 + r + 1 = s 2 s + 1 = 1 + 1 2 ( 1 ) = 3 2 \begin{aligned} S & = \sum_{r=1}^\infty \frac {r^3+(r^2+1)^2}{(r^4+r^2+1)(r^2+r)} \\ & = \sum_{r=1}^\infty \frac {r^4+r^3+2r^2+1}{(r^4+r^2+1)(r^2+r)} \\ & = \sum_{r=1}^\infty \left(\frac 1{r(r+1)} + \frac r{r^4+r^2+1}\right) \\ & = \sum_{r=1}^\infty \left(\frac 1r - \frac 1{r+1} + \frac r{(r^2-r+1)(r^2+r+1)}\right) \\ & = \frac 11 + \sum_{r=1}^\infty \frac 12 \left(\frac 1{r^2-r+1} -{\color{#3D99F6}\frac 1{r^2+r+1}} \right) & \small \color{#3D99F6} \text{Let }s = r+1 \\ & = 1 + \frac 12 \left(\sum_{r=1}^\infty \frac 1{r^2-r+1} -{\color{#3D99F6} \sum_{\color{#D61F06}s=2}^\infty \frac 1{s^2-s+1}} \right) & \small \color{#3D99F6} \implies r^2+r+1 = s^2 - s + 1 \\ & = 1 + \frac 12 (1) = \frac 32 \end{aligned}

Therefore, a + b = 3 + 2 = 5 a+b = 3+2 = \boxed{5} .

Same here.

Ashutosh Sharma - 3 years, 3 months ago
Rohit Joshi
Apr 20, 2018

Llet r=1 Then equation be 9/6 Simplify then we get 3/2 which is a= 3 and b =2 So a+b=5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...