How many four digit numbers divisible by twenty nine have the sum of their digits 29?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let the digits beb,c,d,29−b−c−db,c,d,29−b−c−d As 0≤b,c,d≤9,0<b+c+d≤27<290≤b,c,d≤9,0<b+c+d≤27<29 Now, (29−b−c−d)+10b+100c+1000d=29+9b+99c+999d≡−20b+12c−16d (29−b−c−d)+10b+100c+1000d=29+9b+99c+999d≡−20b+12c−16d We need 29∣(5b−3c+4d)≡−24b−3c+33d⟺29∣(c+8b−11d)29∣(5b−3c+4d)≡−24b−3c+33d⟺29∣(c+8b−11d) For 29∣(8b−11d)⟹8b−11d=(29k−c)(11⋅3−8⋅4)29∣(8b−11d)⟹8b−11d=(29k−c)(11⋅3−8⋅4) ⟺8(b+116k−4c)=11(87k+d−3c)⟺b+116k=11m+4c⟺8(b+116k−4c)=11(87k+d−3c)⟺b+116k=11m+4c ⟺b≡5k+4c(mod11)⟺b≡5k+4c(mod11) and d≡3c+k(mod11)d≡3c+k(mod11) Test for c;0≤c≤9c;0≤c≤9 ensuring 0≤b,c,d≤90≤b,c,d≤9 and b+c+d≥20