Nsejs 2015

How many four digit numbers divisible by twenty nine have the sum of their digits 29?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Yash Youtuber
Nov 18, 2017

Let the digits beb,c,d,29−b−c−db,c,d,29−b−c−d As 0≤b,c,d≤9,0<b+c+d≤27<290≤b,c,d≤9,0<b+c+d≤27<29 Now, (29−b−c−d)+10b+100c+1000d=29+9b+99c+999d≡−20b+12c−16d (29−b−c−d)+10b+100c+1000d=29+9b+99c+999d≡−20b+12c−16d We need 29∣(5b−3c+4d)≡−24b−3c+33d⟺29∣(c+8b−11d)29∣(5b−3c+4d)≡−24b−3c+33d⟺29∣(c+8b−11d) For 29∣(8b−11d)⟹8b−11d=(29k−c)(11⋅3−8⋅4)29∣(8b−11d)⟹8b−11d=(29k−c)(11⋅3−8⋅4) ⟺8(b+116k−4c)=11(87k+d−3c)⟺b+116k=11m+4c⟺8(b+116k−4c)=11(87k+d−3c)⟺b+116k=11m+4c ⟺b≡5k+4c(mod11)⟺b≡5k+4c(mod11) and d≡3c+k(mod11)d≡3c+k(mod11) Test for c;0≤c≤9c;0≤c≤9 ensuring 0≤b,c,d≤90≤b,c,d≤9 and b+c+d≥20

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...