NSEJS #5

Geometry Level 2

If a cos θ + b sin θ = 3 a\cos\theta +b\sin \theta =3 and a sin θ b cos θ = 4 a\sin \theta - b\cos \theta =4 .Find a 2 + b 2 a^2 + b^2 .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

a cos θ + b sin θ = 3 a\cos\theta + b\sin\theta = 3

a 2 cos 2 θ + b 2 sin 2 θ + 2 a b sin θ cos θ = 9 ( 1 ) \Rightarrow a^2\cos^2\theta + b^2\sin^2\theta + 2ab\sin\theta\cos\theta = 9 \ldots (1)

a sin θ b cos θ = 4 a\sin\theta - b\cos\theta = 4

a 2 sin 2 θ + b 2 cos 2 θ 2 a b sin θ cos θ = 16 ( 2 ) \Rightarrow a^2\sin^2\theta + b^2\cos^2\theta - 2ab\sin\theta\cos\theta = 16 \ldots (2)

( 1 ) + ( 2 ) = a 2 ( cos 2 θ + sin 2 θ ) + b 2 ( cos 2 θ + sin 2 θ ) = a 2 + b 2 = 25 (1) + (2) = a^2(\cos^2\theta + \sin^2\theta) + b^2(\cos^2\theta + \sin^2\theta) = a^2 + b^2 = 25

\same \method \same \method

sakshi rathore - 5 years, 10 months ago

When cos \cos and sin \sin appears interchanged, SQUARE AND ADD.

a 2 + b 2 = 25 \Huge \boxed{\Rightarrow a^2+b^2 = 25}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...