NT prac 1

For a n = 6 n + 8 n a_n = 6^n + 8^n , which of the following options satisfy the congruence below?

a 83 x ( m o d 49 ) a_{83} \equiv x \pmod {49}

35 23 41 9

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chris Lewis
Oct 17, 2020

a n = ( 7 1 ) n + ( 7 + 1 ) n = r = 0 n ( n r ) 7 r ( ( 1 ) n r + 1 ) r = 0 1 ( n r ) 7 r ( ( 1 ) n r + 1 ) ( m o d 49 ) ( 1 ) n + 1 + 7 n ( ( 1 ) n + 1 + 1 ) ( m o d 49 ) \begin{aligned} a_n &= (7-1)^n+(7+1)^n \\ &=\sum_{r=0}^n \binom{n}{r} 7^r \left( (-1)^{n-r}+1 \right) \\ &\equiv \sum_{r=0}^1 \binom{n}{r} 7^r \left( (-1)^{n-r}+1 \right) \pmod{49} \\ &\equiv (-1)^n+1+7n\left((-1)^{n+1}+1\right) \pmod{49}\end{aligned}

So a 83 7 83 2 35 ( m o d 49 ) a_{83}\equiv 7\cdot 83 \cdot 2 \equiv \boxed{35} \pmod{49}

Chew-Seong Cheong
Oct 17, 2020

Similar solution with @Chris Lewis 's

6 83 + 8 83 = ( 7 1 ) 83 + ( 7 + 1 ) 83 = 7 83 83 7 82 + 83 82 2 7 81 + 1 + 7 83 + 83 7 82 + 83 82 2 7 81 + + 1 = 2 ( 7 83 + 83 82 2 7 81 + + 83 82 81 6 7 3 + 83 7 ) Twice the odd terms \begin{aligned} \blue{6^{83}} + \red{8^{83}} & = \blue{(7-1)^{83}} + \red{(7+1)^{83}} \\ & = \blue{7^{83} - 83 \cdot 7^{82} + \frac {83 \cdot 82}2 \cdot 7^{81} + \cdots - 1} + \red{7^{83} + 83 \cdot 7^{82} + \frac {83 \cdot 82}2 \cdot 7^{81} + \cdots + 1} \\ & = 2\left(7^{83} + \frac {83 \cdot 82}2 \cdot 7^{81} + \cdots + \frac {83\cdot 82 \cdot 81}6\cdot 7^3 + 83 \cdot 7 \right) \quad \quad \small \blue{\text{Twice the odd terms}} \end{aligned}

Since ( 83 k ) 7 k 0 (mod 83) \dbinom {83}k 7^k \equiv 0 \text{ (mod 83)} for k 2 k \ge 2 , we have 6 83 + 8 83 2 83 7 35 (mod 83) 6^{83} + 8^{83} \equiv 2 \cdot 83 \cdot 7 \equiv \boxed{35} \text{ (mod 83)} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...