A half bubble of radius sits on top of a sphere of radius 1 as shown in the figure below. What value of will maximize the volume of the region between the inside of the half bubble and outside the sphere?
Provide your solution to 4 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
V h b = Volume of a half bubble (hemisphere ) with radius r, = 3 2 ∗ π ∗ r 3 . V c a p = Volume of sphere ,radius R, inside the half bubble is the cap volume with height=h. V c a p = 3 h 2 ∗ π ∗ ( 3 ∗ R − h ) , w e h a v e R = 1 , a n d h 2 = 2 h − r 2 . . . ( ∗ ∗ ) S o l v i n g t h e q u a d r a t i c h = 1 − 1 − r 2 . . . . ( ∗ ∗ ∗ ) . R e p e a t e d l y u s i n g ( ∗ ∗ ) V c a p = 3 π ∗ ( 2 h − r 2 ) ( 3 − h ) = 3 π ∗ { ( 6 + r 2 ) ∗ h − 3 r 2 − 2 h 2 } = 3 π ∗ { ( 6 + r 2 ) ∗ h − 3 r 2 − 2 ( 2 h − r 2 ) } = 3 π ∗ { ( 2 + r 2 ) ∗ h − r 2 } = 3 π ∗ { ( 2 + r 2 ) ∗ ( 1 − 1 − r 2 ) − r 2 } . . . . u s e d . . ( ∗ ∗ ∗ ) = 3 π ∗ { ( 2 + r 2 ) − ( 2 + r 2 ) ∗ 1 − r 2 ) − r 2 } = 3 π ∗ ( 2 − ( 2 + r 2 ) ∗ 1 − r 2 ) ∴ t h e r e q u i r e d v o l u m e V = V h b − V c a p . V = 3 π ∗ ( 2 r 3 − 2 + ( 2 + r 2 ) ∗ 1 − r 2 ) V ′ = 0 , ⟹ 6 r 2 − 2 r ∗ 1 − r 2 + ( 2 + r 2 ) ∗ r ∗ 1 − r 2 1 = 0 , D i v i d i n g b y r = 0 , a n d m u l t i p l y i n g b y 1 − r 2 , 6 r ∗ 1 − r 2 − 2 ( 1 − r 2 ) + ( 2 + r 2 ) = 0 , ⟹ 1 − r 2 = − 6 r 3 r 2 = − 2 r , s q u a r i n g b o t h s i d e s , 1 − r 2 = 4 r 2 . ∴ r = 5 4 = 0 . 8 9 4 4 2 7