Nub of the Matter

Calculus Level 5

A half bubble of radius r r sits on top of a sphere of radius 1 as shown in the figure below. What value of r r will maximize the volume of the region between the inside of the half bubble and outside the sphere?

Provide your solution to 4 decimal places.


The answer is 0.8944.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

V h b = Volume of a half bubble (hemisphere ) with radius r, = 2 π 3 r 3 . V c a p = Volume of sphere ,radius R, inside the half bubble is the cap volume with height=h. V c a p = h 2 π 3 ( 3 R h ) , w e h a v e R = 1 , a n d h 2 = 2 h r 2 . . . ( ) S o l v i n g t h e q u a d r a t i c h = 1 1 r 2 . . . . ( ) . R e p e a t e d l y u s i n g ( ) V c a p = π 3 ( 2 h r 2 ) ( 3 h ) = π 3 { ( 6 + r 2 ) h 3 r 2 2 h 2 } = π 3 { ( 6 + r 2 ) h 3 r 2 2 ( 2 h r 2 ) } = π 3 { ( 2 + r 2 ) h r 2 } = π 3 { ( 2 + r 2 ) ( 1 1 r 2 ) r 2 } . . . . u s e d . . ( ) = π 3 { ( 2 + r 2 ) ( 2 + r 2 ) 1 r 2 ) r 2 } = π 3 ( 2 ( 2 + r 2 ) 1 r 2 ) t h e r e q u i r e d v o l u m e V = V h b V c a p . V = π 3 ( 2 r 3 2 + ( 2 + r 2 ) 1 r 2 ) V = 0 , 6 r 2 2 r 1 r 2 + ( 2 + r 2 ) r 1 1 r 2 = 0 , V_{hb} =\text{Volume of a half bubble (hemisphere ) with radius r, }=\dfrac{2*\pi} 3 * r^3.\\ V_{cap}=\text{Volume of sphere ,radius R, inside the half bubble is the cap volume with height=h.}\\ V_{cap}=\dfrac{h^2*\pi} 3 * (3*R - h), \ we\ have\ R=1, \ and \ \color{#3D99F6}{h^2=2h - r^2...(**)}\\ Solving\ the\ quadratic\ \color{#3D99F6}{h=1 - \sqrt{1 - r^2}....(***) }.\\ Repeatedly\ \ using\ (**)\ \ V_{cap}=\dfrac \pi 3 *(2h - r^2)(3 - h)\\ =\dfrac \pi 3 *\{(6+r^2)*h -3r^2 - 2h^2\}=\dfrac \pi 3 *\{(6+r^2)*h -3r^2 - 2(2h-r^2) \}\\ =\dfrac \pi 3 *\{(2+r^2)*h - r^2\}=\dfrac \pi 3 *\{(2+r^2)*(1-\sqrt{1- r^2}) - r^2 \}....used..(***)\\ =\dfrac \pi 3 *\{(2+r^2) - (2+r^2) *\sqrt{1 - r^2}) - r^2\}=\dfrac \pi 3 *(2 - (2+ r^2) *\sqrt{1 - r^2}) \\ \therefore\ the \ required\ volume\ V= V_{hb} - V_{cap}.\\ V=\dfrac \pi 3*(2r^3 - 2+(2 +r^2) *\sqrt{1 - r^2})\\ V '=0,\ \implies\ \ 6r^2 - 2r*\sqrt{1 - r^2} + (2 +r^2)*r*\dfrac 1{ \sqrt{1 - r^2}} = 0,\\ D i v i d i n g b y r 0 , a n d m u l t i p l y i n g b y 1 r 2 , 6 r 1 r 2 2 ( 1 r 2 ) + ( 2 + r 2 ) = 0 , 1 r 2 = 3 r 2 6 r = r 2 , s q u a r i n g b o t h s i d e s , 1 r 2 = r 2 4 . r = 4 5 = 0.894427 Dividing\ by\ r\neq 0,\ and\ multiplying\ by\ \sqrt{1 - r^2},\\ 6r*{\sqrt{1 - r^2} - 2(1 - r^2) + (2 +r^2)} =0,\\ \implies\ \sqrt{1 - r^2}= - \dfrac{ 3r^2}{6r}= - \frac r 2,\ \ squaring\ both\ sides,\\ 1-r^2=\dfrac{r^2} 4.\ \ \therefore\ r=\sqrt{\dfrac 4 5}= \Large \ \ \ \ \color{#D61F06}{0.894427}

Unique approach for a solution!

W Rose - 5 years, 2 months ago
W Rose
Oct 9, 2016

Let the x-axis be the line joining the centers of the half bubble and sphere.

Let x = a be the point where the plane of intersection of the half bubble and sphere meets the x-axis.

Then a^2 + r^2 = 1

The volume H of the half bubble is 1/2(4/3 pi r^3) = 2/3 pi r^3 i.e. H/pi = 2/3 r^3

The volume of a circular disc of thickness dx and radius y is pi y^2 dx and the volume U of the sphere inside the half bubble is:

U = Integral ( from x = a to x = 1) of pi y^2 dx where x^2 + y^2 = 1

U/pi = Integral ( from x = a to x = 1) of (1 - x^2)dx = x - x^3/3 ( from x = a to x = 1) = 2/3 - (a - a^3/3)

Let V be the required volume between the inside of the half bubble and outside the sphere.

Then V = H - U, and V/pi = 2/3 r^3 - 2/3 + (a - a^3/3) = 2/3 r^3 - 2/3 + (1 - r^2)^(0.5) - [ (1 - r^2)^(3/2) ] / 3

For a maximum dV/dr = 0 that is 2 r^2 - r (1 - r^2)^(-0.5) + r (1 - r^2)^(0.5) = 0

2 r^2 (1 - r^2)^(0.5) - r + r(1 - r^2) = 0 ==> 2(1 - r^2)^(0.5) - r = 0 ==>4(1 - r^2) = r^2 ==> 5r^2 = 4

r = 2 / [ 5^(0.5) ] = 0.8944.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...