Who's up to the challenge? 24

x 2 + y x y 2 = 5 \large \dfrac { { x }^{ 2 }+y }{ x-{ y }^{ 2 } } =5

How many integral solution(s) does the above equation have?


this is a part of Who's up to the challenge?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The given equation can be written as x 2 + y = 5 x 5 y 2 x 2 5 x + y + 5 y 2 = 0 x^{2} + y = 5x - 5y^{2} \Longrightarrow x^{2} - 5x + y + 5y^{2} = 0 .

As this is a quadratic in x x , we see that

x = 5 ± ( 5 ) 2 4 ( y + 5 y 2 ) 2 = 5 ± 20 y 2 4 y + 25 2 x = \dfrac{5 \pm \sqrt{(-5)^{2} - 4(y + 5y^{2})}}{2} = \dfrac{5 \pm \sqrt{-20y^{2} - 4y + 25}}{2} .

Now in order for x x to be an integer we will require that for some integer n 1 n \ge 1

20 y 2 4 y + 25 = n 2 20 ( y 2 + 1 5 + 1 100 ) + 1 5 + 25 = n 2 -20y^{2} - 4y + 25 = n^{2} \Longrightarrow -20(y^{2} + \frac{1}{5} + \frac{1}{100}) + \frac{1}{5} + 25 = n^{2}

20 ( y + 1 10 ) 2 + 126 5 = n 2 \Longrightarrow -20(y + \frac{1}{10})^{2} + \frac{126}{5} = n^{2} .

(Note that we can't have n = 0 n = 0 as this would make x = 5 2 x = \frac{5}{2} , i.e., non-integral.) Now as n 2 1 n^{2} \ge 1 we will then require that

20 ( y + 1 10 ) 2 1 126 5 ( y + 1 10 ) 2 121 100 y + 1 10 11 10 6 5 y 1 -20(y + \frac{1}{10})^{2} \ge 1 - \frac{126}{5} \Longrightarrow (y + \frac{1}{10})^{2} \le \frac{121}{100} \Longrightarrow |y + \frac{1}{10}| \le \frac{11}{10} \Longrightarrow -\frac{6}{5} \le y \le 1 .

Since y y must also be integral we see that the only possible values for y y are 1 , 0 -1, 0 and 1 1 . Plugging these values into our quadratic solution for x x yields the potential solution pairs

( 1 , 1 ) , ( 4 , 1 ) , ( 0 , 0 ) , ( 5 , 0 ) , ( 2 , 1 ) (1,-1), (4,-1), (0,0), (5,0), (2,1) and ( 3 , 1 ) (3,1) .

Checking each of these back in the original equation, we see that ( 1 , 1 ) (1,-1) and ( 0 , 0 ) (0,0) yield indeterminate values for the expression x 2 + y x y 2 \frac{x^{2} + y}{x - y^{2}} , leaving us with a final total of 4 \boxed{4} valid integral solution pairs ( x , y ) (x,y) .

nice solution!

Hamza A - 5 years, 2 months ago

x 2 + y x y 2 = 5 , 5 y 2 + y + x 2 5 x = 0. S o l v i n g a s a q u a d r a t i c i n x , x = 5 ± 25 20 y 2 4 y 2 . W e c a n c l e a r l y s e e t h a t f o r e v e n a r e a l x , i n t e g e r y h a s t o b e 1 y 1. y = 1 , x = 5 ± 9 2 = 4 O R 1 , b u t 1 i s n o t v a l i d s o w e h a v e ( 4 , 1 ) a s s o l u t i o n . . . . . . . . . . . . . . { 1 } y = 0 , x = 5 ± 25 2 = 5 O R 0 , b u t 0 i s n o t v a l i d s o w e h a v e ( 5 , 0 ) a s s o l u t i o n . . . . . . . . . . . . . { 2 } y = 1 , x = 5 ± 1 2 = 3 O R 2 , b o t h a r e v a l i d s o w e h a v e ( 2 , 1 ) a n d \ ( 3 , 1 ) a s s o l u t i o n s . . . . . { 4 } 4 s o l u t i o n s . \large \dfrac { { x }^{ 2 }+y }{ x-{ y }^{ 2 } } =5,\ \ \implies\ \ \ 5y^2+y+x^2 - 5x=0.\\ Solving\ as\ a\ quadratic\ in\ x, \ \ x= \dfrac{5 \pm\ \sqrt{25 - 20y^2 - 4y}}{2}.\\ We\ can\ clearly\ see\ that\ for\ even \ a\ real \ x,\ integer\ y\ \ has\ to\ be -1\ \leq\ y\ \leq\ 1.\\ y= - 1, \ \ x=\dfrac{5 \pm \sqrt{9}}2=4\ \ OR\ \ 1, \ but\ 1\ is\ not\ valid\ so \ \ \ we\ have\ \ (4, - 1)\ as\ solution..............\{1\}\\ y=\ \ 0,\ \ \ x=\dfrac{5 \pm \sqrt{25}}2=5\ \ OR\ \ 0, \ but\ 0\ is\ not\ valid\ so \ \ \ we\ have\ \ (5, \ \ 0)\ as\ solution.............\{2\}\\ y= \ \ 1,\ \ \ x=\dfrac{5 \pm \sqrt{1}}2=3\ \ OR\ \ 2, \ \ both\ are\ valid\ so \ \ \ we\ have\ \ (2,1)\ and\ \ (3,1)\ \ as\ solutions.....\{4\} \\ \Large\ \ \color{#D61F06}{4}\ \ \ solutions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...