Number 7

x = ( 1 2013 + 2 2013 + + 201 2 2013 ) m o d 2013 \large x = \left(1^{2013} + 2^{2013} + \cdots + 2012^{2013}\right ) \bmod {2013}

Find the value of 5 x 5x .

Clarification : x < 2013 |x|<2013


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We can pair up the numbers as follows: ( 1 2013 + 2 2013 + 3 2013 + + 201 1 2013 + 201 2 2013 ) ( m o d 2013 ) ( ( 1 2013 + 201 2 2013 ) + ( 2 2013 + 201 1 2013 ) + + ( 100 6 2013 + 100 7 2013 ) ) ( m o d 2013 ) ( ( 1 2013 + ( 1 ) 2013 ) + ( 2 2013 + ( 2 ) 2013 ) + + ( 100 6 2013 + ( 1006 ) 2013 ) ) ( m o d 2013 ) ( 0 + 0 + 0 + + 0 ) ( m o d 2013 ) = 0 = x \begin{aligned} (1^{2013}+2^{2013}+3^{2013}+\cdots +2011^{2013}+2012^{2013})&\pmod{2013}\\ \left((1^{2013}+2012^{2013})+(2^{2013}+2011^{2013})+\cdots+(1006^{2013}+1007^{2013})\right)&\pmod{2013}\\ \left((1^{2013}+(-1)^{2013})+(2^{2013}+(-2)^{2013})+\cdots+(1006^{2013}+(-1006)^{2013})\right)&\pmod{2013}\\ (0+0+0+\cdots+0)&\pmod{2013}=0=x \end{aligned} Hence 5 x = 0 5x=\boxed{0}

Did the same . I think the problem is a bit overrated

Aditya Kumar - 5 years ago
Swapnil Das
May 17, 2016

Here, I use the fact that \text{Here, I use the fact that} ( a + b ) ( a n + b n ) (a+b)|{ (a }^{ n }+{ b }^{ n }) , for all odd \text{for all odd} n n .

Now, \text{Now,} x = ( 1 2013 + 2 2013 + + 201 2 2013 ) x = (1^{2013} + 2^{2013} + \cdots + 2012^{2013} ) = = ( 1 2013 + 2012 2013 ) + ( 2 2013 + 2011 2013 ) + . . . + ( 1005 2013 + 1008 2013 ) + ( 1006 2013 + 1007 2013 ) { (1 }^{ 2013 }+{ 2012 }^{ 2013 })+({ 2 }^{ 2013 }+{ 2011 }^{ 2013 })+...+({ 1005 }^{ 2013 }+{ 1008 }^{ 2013 })+({ 1006 }^{ 2013 }+{ 1007 }^{ 2013 }) \equiv\color\red{0} \quad \text {mod}\quad 2013 .

\therefore \color\green{ 5x=0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...