Find the number of triples , where and are odd primes, is an integer satisfying , and
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The answer is 4998. Obviously ( 3 , 3 , n ) is a solution where n = 2 , 3 , 4 , . . . . But are there any other solutions? Assume there exist solutions such that p and q are distinct and p , q > 3 . We can assume that q > p ≥ 5 .
If n = 2 , then q 2 ∣ p 4 − 3 4 , namely q 2 ∣ ( p 2 + 3 2 ) ( p 2 − 3 2 ) . Since q cannot divide p 2 + 3 2 and p 2 − 3 2 at the same time, q 2 divides only one of p 2 + 3 2 and p 2 − 3 2 . However, 0 < p 2 − 3 2 < q 2 , p 2 + 3 2 ( n o t ) ( e q u a l ) ( t o ) q 2 and p 2 + 3 2 < 2 p 2 < 2 q 2 , a contradiction. Hence there is no solution for n = 2 . So, we can assume that n ≥ 3 , then p n ∣ q ( n + 2 ) − 3 ( n + 2 ) and q n ∣ p ( n + 2 ) − 3 ( n + 2 ) . g cd ( p n , q n ) = 1 yields p n q n ∣ p ( n + 2 ) + q ( n + 2 ) − 3 ( n + 2 ) hence p n q n ≤ p ( n + 2 ) + q ( n + 2 ) − 3 ( n + 2 ) < 2 q ( n + 2 ) so, we have p n < q 2 .
On the other hand, q n ∣ p ( n + 2 ) − 3 ( n + 2 ) implies q n < p ( n + 2 ) . So, q < p ( 1 + n 2 ) . Combining it with p n < 2 q 2 then yields p n < 2 p ( 2 + n 4 ) < p ( 3 + n 4 ) , therefore n < 3 + n 4 , namely n = 3 . Thus, p 3 ∣ q 5 − 3 5 and q 3 ∣ p 5 − 3 5 .
Since 5 5 − 3 5 = 2 × 1 1 × 1 3 1 which does not contain factors of the form q 3 , so p > 5 . p 3 ∣ q 5 − 3 5 implies that p ∣ q 5 − 3 5 , and Fermat's Little Theorem yields p ∣ q ( p − 1 ) − 3 ( p − 1 ) . When ( 5 , p − 1 ) = 1 and p ( n o t ) ( d i v i d e ) q − 3 , then q − 3 q 5 − 3 5 , q − 3 q ( p − 1 ) − 3 ( p − 1 ) ≥ p > 1 . However, for example, if p − 1 = 5 k + 4 , then ( q − 3 q 5 − 3 5 , q − 3 q ( p − 1 ) − 3 ( p − 1 ) ) = ( q 4 + q 3 . 3 + . . . + q . 3 3 + 3 4 , q ( p − 2 ) + q ( p − 3 ) . 3 + . . . + q . 3 ( p − 3 ) + 3 ( p − 2 = ( q 4 + q 3 . 3 + . . . + q . 3 3 + 3 4 , q ( p − 2 ) + q ( p − 3 ) . 3 + q ( p − 4 ) . 3 2 + q ( p − 5 ) . 3 3 ) = ( q 4 + q 3 . 3 + . . . + q . 3 3 + 3 4 , q ( p − 6 ) . 3 4 ) = ( q 4 + q 3 . 3 + . . . + q . 3 3 + 3 4 , q ( p − 7 ) ) =...= ( q 4 + q 3 . 3 + . . . + q . 3 3 + 3 4 , 3 4 ) = 1
and the same result can also be obtained for p − 1 = 5 k + r , r = 1 , 2 , 3 . . Thus, p ∣ q − 3 if ( 5 , p − 1 ) = 1 , i.e. q ≡ 3 ( m o d p ) . Then q − 3 q 5 − 3 5 = q 4 + 3 q 3 + . . . + 3 4 ≡ 5 × 3 4 ( n o t ) ( c o n g r u e n t ) 0 ( m o d p ) hence p 3 ∣ q − 3 . However, q 3 ∣ p 5 − 3 5 gives q 3 ≤ p 5 − 3 5 < p 5 = ( p 3 ) 3 5 < q 3 5 , a contradiction. Similar contradiction is obtained if ( 5 , q − 1 ) =1.
Thus, we assume that ( 5 , p − 1 ) = ( 5 , q − 1 ) = 5 . ( q , p − 3 ) = 1 (since q > p ≥ 7 ) and q 3 ∣ p 5 − 3 5 implies that q 3 ∣ p − 3 p 5 − 3 5 , hence q 3 ≤ p − 3 p 5 − 3 5 = p 4 + p 3 . 3 + p 2 . 3 2 + p . 3 3 + 3 4 . 5 ∣ p − 1 a n d 5 ∣ q − 1 implies that p ≥ 1 1 , q ≥ 3 1 . Therefore q 3 ≤ p 4 ( 1 + p 3 + ( p 3 ) 2 + ( p 3 ) 3 + ( p 3 ) 4 ) < p 4 . ( 1 − p 3 ) − 1 ≤ 8 1 1 p 4 , hence ( p q ) 3 ≤ 8 1 1 p and p 3 q 2 = ( ( p q ) 3 ) 3 2 . p 1 ≤ ( 8 1 1 ) 3 2 . p 3 − 1 < 8 5 . Thus, p 3 q 3 p 5 + q 5 − 3 5 < q 3 p 2 + p 3 q 2 < 3 1 1 + 8 5 < 1 , which is a contradiction. Thus the solutions are ( 3 , 3 , n ) , n = 2 , 3 , 4 , . . . . Since it is given that 1 < n < 5 0 0 0 , n = 2 , 3 , 4 , . . . 4 9 9 9 . So, there are a total of 4 9 9 8 solutions.