Number Mayhem

Suppose that a set consists of all the possible four digit number combinations of the digits 3, 4, 5, 6, and 7. Given that there are no repetitions of the digits in any given number, what is the sum of all such number combinations.


The answer is 666600.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sarthak Rath
Mar 4, 2015

there are 5x4x3x2 nos. we have to find their sum.

it is for a four digit no.,

1111 . (sum of digits) . (no. of times a digit occurs in one place)

putting values:

1111 x 25 x 24 = 666600.

[the formula above is derived from the carry method in which we find the unit digit and carry the remaining to tens place in which we primarily see sum of digits x no. of times it occurs...] {a direct formula derived :) }

Aden Smiles
Dec 7, 2014

3456+3457+3465+3467+3475+3476+3546+3547+3564+3567+3574+3576 +3645+3647+3654+3657+3674+3675+3745+3746+3754+3756+3764+376 5 = 86652

4356+4357+4365+4367+4375+4376+4536+4537+4563+4567+4573+4576 +4635+4637+4653+4657+4673+4675+4735+4736+4753+4756+4763+476 5 = 109986

5346+5347+5364+5367+5374+5376+5436+5437+5463+5467+5473+5476 +5634+5637+5643+5647+5673+5674+5734+5736+5743+5746+5763+576 4 = 133320

6345+6347+6354+6357+6374+6375+6435+6437+6453+6457+6473+6475 +6534+6537+6543+6547+6573+6574+6734+6735+6743+6745+6753+675 4 = 156654

7345+7346+7354+7356+7364+7365+7435+7436+7453+7456+7463+7465 +7534+7536+7543+7546+7563+7564+7634+7635+7643+7645+7653+765 4 = 179988

179988+156654+133320+109986+86652=666600

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...