Number of digits To Infinity :

For any positive integer n n , what is the number of digits of the decimal representation of 1 + 2 + 3 + + 1 0 n ? 1 + 2 + 3 + \cdots + 10^n ?

n n 2 n 2n 3 n 3n 4 n 4n n 2 n^2 n 3 n^3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 25, 2021

Let the sum be S S . Then

S = 1 + 2 + 3 + + 1 0 n = 1 0 n ( 1 0 n + 1 ) 2 = ( 5 × 1 0 n 1 ) ( 1 0 n + 1 ) = 5 × 1 0 2 n 1 + 5 × 1 0 n 1 = 5 0000 0000 number of 0s = n 1 5 0000 0000 number of 0s = n 1 \begin{aligned} S & = 1 +2+3+\cdots +10^n \\ & = \frac {10^n(10^n+1)}2 \\ & = (5 \times 10^{n-1})(10^n+1) \\ & = 5 × 10^{2n-1} + 5 × 10^{n-1} \\ & = 5 \underbrace{0000 \cdots 0000}_{\text{number of 0s} = n-1} 5 \underbrace{0000 \cdots 0000}_{\text{number of 0s} = n-1} \end{aligned}

Therefore the number of digits of S S is 1 + n 1 + 1 + n 1 = 2 n 1+n-1+1+n-1=\boxed{2n} .

Thank You Very Much .

محمد أبو العمايم - 3 months, 2 weeks ago

*Let : S = 1 + 2 + 3 + . . . . . + 10^n : S = [ (10^n) / 2 ] + [ ( 10^2n) / 2 ] = [ 5 x 10^(n-1) ] + [ 5 x 10^( 2n - 1 ) ] : As we know that the number of
digits of ( 10^n ) = n + 1 : So the number of digits of [ 10^( 2n - 1 ) ] = 2n .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...