How many 4 digit numbers can be made with the digits 1, 2, 3, and 4 such that no two adjacent digits are same?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First we can put any four options hence we have 4 options. Then 3 options are left as we cannot repeat the one we have already used. Hence 3 options. And then again 3 options as we have used the two and we have a no which is beside us so we cannot repeat that no Hence again we have 3 options .. and again 3 options. Hence 4 ∗ 3 ∗ 3 ∗ 3 = 108 . That is our answer