Number of Primes

n + n + n + \large \sqrt{n+\sqrt{n+\sqrt{n+ \cdots}}}

Find the number of natural numbers n 2016 n \leq 2016 for which the infinitely nested radical expression above is a prime number?


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Nov 26, 2016

Let f ( n ) = n + n + n + n + f 2 ( n ) = n + f ( n ) f 2 ( n ) f ( n ) n = 0 f ( n ) = 1 2 + 1 + 4 n 2 -ve is neglected since f(n) is +ve for f(n) to be a prime number , Let 1 + 4 n = m 2 f ( n ) = 1 2 ( 1 + m ) 1 + m must be an even no. , Let 2k f ( n ) = k now , n = 1 4 [ ( 2 k 1 ) 2 1 ] n = k 2 k 2016 where k is prime Possible values of k = ( 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 ) So our answer is 14 \text{ Let } f(n) = \sqrt{n+\sqrt{n+\sqrt{n+\sqrt{n+\cdots}}}} \\ f^{2}(n) = n+f(n) \\ f^{2}(n)-f(n)-n=0 \\ f(n) = \dfrac{1}{2}+\dfrac{\sqrt{1+4n}}{2} \quad \small{\color{#3D99F6}{\text{-ve is neglected since f(n) is +ve }}} \\ \text{for f(n) to be a prime number , Let } 1+4n = m^2 \\ f(n) = \dfrac{1}{2} \left( 1+m \right) \\ 1+m \text{ must be an even no. , Let 2k } \\ f(n) = k \\ \text{ now , } n=\dfrac{1}{4}\left[ (2k-1)^2-1\right] \\ n = k^2-k \le 2016 \quad \small{\color{#3D99F6}{\text{where k is prime}}} \\ \text{Possible values of k } = \left( 2,3,5,7,11,13,17,19,23,29,31,37,41,43 \right) \\ \text{So our answer is } 14

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...