Number of real roots

Level pending

The number of real roots of the polynomial

P 999 ( x ) = 1 + x 1 ! + x ( x + 1 ) 2 ! + . . . . . . . + x ( x + 1 ) . . . ( x + 998 ) 999 ! \displaystyle P_{999}(x) = 1+\frac{x}{1!}+\frac{x(x+1)}{2!}+.......+\frac{x(x+1)...(x+998)}{999!}


The answer is 999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Moehring
Oct 1, 2018

For n { 1 , 2 , , 999 } , n \in \{1,2,\ldots, 999\}, P 999 ( n ) = 1 + ( 1 ) 1 n 1 ! + ( 1 ) 2 n ( n 1 ) 2 ! + + ( 1 ) 999 n ( n 1 ) ( n 998 ) 999 ! = ( n 0 ) ( 1 ) 0 + ( n 1 ) ( 1 ) 1 + ( n 2 ) ( 1 ) 2 + + ( n 999 ) ( 1 ) 999 = k = 0 999 ( n k ) ( 1 ) k = k = 0 n ( n k ) ( 1 ) k + k = n + 1 999 0 ( 1 ) k = ( 1 + ( 1 ) ) n + 0 = 0 \begin{aligned} P_{999}(-n) &= 1 + (-1)^1\frac{n}{1!} + (-1)^2\frac{n(n-1)}{2!} + \cdots + (-1)^{999}\frac{n(n-1)\cdots(n-998)}{999!} \\ &= \binom{n}{0}(-1)^0 + \binom{n}{1}(-1)^1 + \binom{n}{2}(-1)^2 + \cdots + \binom{n}{999}(-1)^{999} \\ &= \sum_{k=0}^{999} \binom{n}{k} (-1)^k \\ &= \sum_{k=0}^n \binom{n}{k} (-1)^k + \sum_{k=n+1}^{999} 0\cdot (-1)^k\\ &= \big(1+(-1)\big)^n + 0\\ &= 0 \end{aligned}

Therefore each of 1 , 2 , , 999 -1, -2, \ldots, -999 is a real root of P 999 , P_{999}, which is a polynomial of degree 999 , 999, so there are exactly 999 999 real roots of P 999 ( x ) P_{999}(x)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...