Number of Residues in Modulo 2027

Consider the 2 1013 2^{1013} numbers ± 1 ± 2 ± ± 1013 \pm 1 \pm 2 \pm \cdots \pm 1013 . How many of these numbers are 2017 2017 in modulo 2027 ? 2027? Express your answer in modulo 1000. 1000.


The answer is 859.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alan Yan
Jan 7, 2018

Let p = 2027 p = 2027 and observe that this is prime. Let a i a_i for 0 i p 1 0 \leq i \leq p-1 be the number of the 2 1013 2^{1013} numbers which are i i in modulo p p . Then, N = i = 1 p 1 2 ( ε k + ε k ) = a 0 + . . . + a p 1 ε p 1 N = \prod_{i = 1}^{\frac{p-1}{2}} (\varepsilon^k + \varepsilon^{-k}) = a_0 + ... + a_{p-1} \varepsilon^{p-1} where ε = exp ( 2 π p i ) \varepsilon = \exp \left ( \frac{2\pi}{p}i \right ) . Now, observe that i = 1 p 1 ( ε k + ε k ) = N i = p + 1 2 p 1 ( ε k + ε k ) = N i = p + 1 2 p 1 ( ε k p + ε p k ) = N i = 1 p 1 2 ( ε k + ε k ) = N 2 \begin{aligned} \prod_{i = 1}^{p-1} (\varepsilon^k + \varepsilon^{-k} ) & = N \prod_{i = \frac{p+1}{2}}^{p-1} (\varepsilon^k + \varepsilon^{-k} ) \\ & = N \prod_{i = \frac{p+1}{2}}^{p-1} (\varepsilon^{k-p} + \varepsilon^{p-k} ) \\ & = N \prod_{i = 1}^{\frac{p-1}{2}} (\varepsilon^k + \varepsilon^{-k}) \\ & = N^2 \end{aligned} But, i = 1 p 1 ( ε k + ε k ) = i = 1 p 1 ( ε 2 k + 1 ) = i = 1 p 1 ( 1 + ε k ) = 1 \prod_{i = 1}^{p-1} (\varepsilon^k + \varepsilon^{-k} ) = \prod_{i = 1}^{p-1} (\varepsilon^{2k} + 1) = \prod_{i = 1}^{p-1} (1 + \varepsilon^{k} ) = 1 where we use the fact that k 2 k k \rightarrow 2k is bijective in Z / p Z \mathbb{Z}/p\mathbb{Z} and 1 + x + . . . + x p 1 = 1 k p 1 ( x ε k ) 1 + x + ... + x^{p-1} = \prod_{1 \leq k \leq p-1} (x - \varepsilon^k) . So N 2 = 1 N = ± 1 N^2 = 1 \implies N = \pm 1 . So, a 0 + . . . + a p 1 ε p 1 = ± 1 a 0 ± 1 = a 1 = . . . = a p 1 = q a_0 + ... + a_{p-1} \varepsilon^{p-1} = \pm 1 \implies a_0 \pm 1 = a_1 = ... = a_{p-1} = q for some integer q q . Then, p q = a 0 + . . . + a p 1 ± 1 = 2 p 1 2 ± 1. pq = a_0 + ... + a_{p-1} \pm 1 = 2^{\frac{p-1}{2}} \pm 1. Since q q must be an integer and 2 p 1 2 ( 2 p ) 2^{\frac{p-1}{2}} \equiv \left ( \frac{2}{p} \right ) , q = 2 1013 ( 2 2027 ) 2027 = 2 1013 + 1 2027 859 ( m o d 1000 ) . q = \frac{2^{1013} - \left (\frac{2}{2027} \right )}{2027} = \frac{2^{1013} + 1}{2027} \equiv 859 \pmod{1000}. This is our answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...