Number of solutions

Find the number of integers N N such that

( 2 N 6 ) 3 N 7 \frac{(2N-6)^3}{N-7}

is a positive integer.


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 25, 2015

Let I I be the expression, then we have:

I = ( 2 N 6 ) 3 N 7 = ( 2 [ N 7 ] + 8 ) 3 N 7 = 8 [ N 7 ] 3 + 96 [ N 7 ] 2 + 384 [ N 7 ] + 512 N 7 = 8 [ N 7 ] 2 + 96 [ N 7 ] + 384 + 512 N 7 \begin{aligned} I & = \frac{(2N-6)^3}{N-7} \\ & = \frac{(2[N-7]+8)^3}{N-7} \\ & = \frac{8[N-7] ^3 + 96[N-7]^2 + 384[N-7] + 512}{N-7} \\ & = 8[N-7] ^2 + 96[N-7] + 384 + \color{#3D99F6}{\frac{512}{N-7}} \end{aligned}

For the LHS be an integer, 512 N 7 \color{#3D99F6}{\frac{512}{N-7}} must be an integer or ( N 7 ) 512 (N-7)|512 . Since 512 = 2 9 512 = 2^9 ,

N 7 = ± 2 n where n = 0 , 1 , 2 , . . . 9 N = ± 2 n + 7 \begin{aligned} \Rightarrow N-7 & = \pm 2^n \quad \quad \small \color{#3D99F6}{\text{where }n = 0,1,2,...9} \\ \Rightarrow N & = \pm 2^n + 7 \end{aligned}

Therefore, there are 20 20 N which give integer I I but three of these cases, when N = 3 , 5 N = 3, 5 and 6 6 , I 0 I \le 0 (see below), therefore, the number of N N that I I is a positive integer is 17 \boxed{17} .

N I 505 2048383 249 500094 121 119164 57 27000 25 5488 9 864 1 64 3 0 5 32 6 216 8 1000 9 864 11 1024 15 1728 23 4000 39 11664 71 39304 135 143748 263 549250 519 2146689 \small \begin{array} {rr} N & I \\ -505 & 2048383 \\ -249 & 500094 \\ -121 & 119164 \\ -57 & 27000 \\ -25 & 5488 \\ -9 & 864 \\ -1 & 64 \\ \color{#D61F06}{3} & \color{#D61F06}{0} \\ \color{#D61F06}{5} & \color{#D61F06}{-32} \\ \color{#D61F06}{6} & \color{#D61F06}{-216} \\ 8 & 1000 \\ 9 & 864 \\ 11 & 1024 \\ 15 & 1728 \\ 23 & 4000 \\ 39 & 11664 \\ 71 & 39304 \\ 135 & 143748 \\ 263 & 549250 \\ 519 & 2146689 \end{array}

What same way? Post your solution otherwise ....

Priyanshu Mishra - 5 years, 7 months ago

Exactly same way

Paola Ramírez - 5 years, 7 months ago

Exactly Same Way

Kushagra Sahni - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...