Find the number of integers such that
is a positive integer.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let I be the expression, then we have:
I = N − 7 ( 2 N − 6 ) 3 = N − 7 ( 2 [ N − 7 ] + 8 ) 3 = N − 7 8 [ N − 7 ] 3 + 9 6 [ N − 7 ] 2 + 3 8 4 [ N − 7 ] + 5 1 2 = 8 [ N − 7 ] 2 + 9 6 [ N − 7 ] + 3 8 4 + N − 7 5 1 2
For the LHS be an integer, N − 7 5 1 2 must be an integer or ( N − 7 ) ∣ 5 1 2 . Since 5 1 2 = 2 9 ,
⇒ N − 7 ⇒ N = ± 2 n where n = 0 , 1 , 2 , . . . 9 = ± 2 n + 7
Therefore, there are 2 0 N which give integer I but three of these cases, when N = 3 , 5 and 6 , I ≤ 0 (see below), therefore, the number of N that I is a positive integer is 1 7 .
N − 5 0 5 − 2 4 9 − 1 2 1 − 5 7 − 2 5 − 9 − 1 3 5 6 8 9 1 1 1 5 2 3 3 9 7 1 1 3 5 2 6 3 5 1 9 I 2 0 4 8 3 8 3 5 0 0 0 9 4 1 1 9 1 6 4 2 7 0 0 0 5 4 8 8 8 6 4 6 4 0 − 3 2 − 2 1 6 1 0 0 0 8 6 4 1 0 2 4 1 7 2 8 4 0 0 0 1 1 6 6 4 3 9 3 0 4 1 4 3 7 4 8 5 4 9 2 5 0 2 1 4 6 6 8 9