Number of solutions of Determinant

Algebra Level 4

arcsin x arcsin 2 x arcsin 3 x arcsin 3 x arcsin x arcsin 2 x arcsin 2 x arcsin 3 x arcsin x = 0 \left| \begin{matrix} \arcsin { x } & \arcsin { 2x } & \arcsin { 3x } \\ \arcsin { 3x } & \arcsin { x } & \arcsin { 2x } \\ \arcsin { 2x } & \arcsin { 3x } & \arcsin { x } \end{matrix} \right| =0 If the number of solutions of the above determinant is A A , find 2016 A \dfrac{2016}A .


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joe Mansley
Mar 15, 2021

After some algebra we get ( arcsin x + arcsin 2 x + arcsin 3 x ) ( ( arcsin x arcsin 2 x ) ) 2 + ( arcsin 2 x arcsin 3 x ) 2 + ( arcsin 3 x arcsin x ) 2 ) = 0 (\arcsin x + \arcsin 2x + \arcsin 3x ) ((\arcsin x - \arcsin 2x))^{2}+ (\arcsin 2x - \arcsin 3x )^{2} + (\arcsin 3x - \arcsin x)^{2}) = 0

The only solution to this is x = 0 x=0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...