Number of Terms

Find the number of distinct terms in the expansion of

( x 3 + 1 + 1 x 3 ) 100 . \left( x^3 + 1 + \dfrac1{x^3} \right)^{100}.

5118 5151 201 101

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jaideep Khare
Feb 11, 2016

First of all we write its general term :(Using Multinomial)

100 ! r 1 ! r ! 2 r 3 ! ( x 3 ) r 1 ( 1 ) r 2 ( 1 x 3 ) r 3 \frac { 100! }{ { r }_{ 1 }!{ r }!_{ 2 }{ r }_{ 3 }! } \cdot { \left( { x }^{ 3 } \right) }^{ { r }_{ 1 } }{ \left( 1 \right) }^{ { r }_{ 2 } }{ \left( \frac { 1 }{ { x }^{ 3 } } \right) }^{ { r }_{ 3 } }

where r 1 , r 2 , r 3 {r}_1,{r}_2,{r}_3 are integers and r 1 + r 2 + r 3 = 100 { r }_{ 1 }{ +r }_{ 2 }+{ r }_{ 3 }=100 . On simplification ;

100 ! r 1 ! r ! 2 r 3 ! ( x ) 3 ( r 1 r 3 ) \frac { 100! }{ { r }_{ 1 }!{ r }!_{ 2 }{ r }_{ 3 }! } \cdot { \left( x \right) }^{ 3\left( { r }_{ 1 }-{ r }_{ 3 } \right) } .

Now,since r 1 { r }_{ 1 } and r 3 { r }_{3} are integers ( r 1 r 3 ) ({ r }_{ 1 }-{ r }_{ 3 } ) will also be an integer (say r r ) where r [ 100 , 100 ] r\in \left[ -100,100 \right] Now distinct terms means terms having different powers of x x because similar powers of x x will add up together .So we will have powers of x x ranging from x 300 , x 297 , x 294 . . { x }^{ -300 },{ x }^{ -297 },{ x }^{ -294 }.. to . . x 3 , x 0 , x 3 . . ..{ x }^{ -3 },{ x }^{ 0 },{ x }^{ 3 }.. to . . x 294 , x 297 , x 300 ..{ x }^{ 294 },{ x }^{ 297 },{ x }^{ 300 } which are 201 \boxed { 201 } terms.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...