Number of zeros after the decimal point

How many consecutive zeros come immediately after the decimal point in the decimal representation of 1 0 320 1 0 640 1 10^{320} -\sqrt{10^{640}-1} ?


The answer is 320.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Alexander Shannon
Jan 11, 2021

1 0 320 1 0 640 1 = 1 0 320 1 0 640 1 × 1 0 320 + 1 0 640 1 1 0 320 + 1 0 640 1 = 1 1 0 320 + 1 0 640 1 10^{320}-\sqrt{10^{640}-1}= 10^{320}-\sqrt{10^{640}-1} \times \frac{10^{320}+\sqrt{10^{640}-1}}{10^{320}+\sqrt{10^{640}-1}}=\frac{1}{10^{320}+\sqrt{10^{640}-1}}

Since 1 0 640 1 < 1 0 320 \sqrt{10^{640}-1}<10^{320} ,

5 1 0 321 = 1 2 × 1 0 320 < 1 1 0 320 + 1 0 640 1 < 1 1 0 320 \frac{5}{10^{321}} = \frac{1}{2 \times 10^{320}} < \frac{1}{10^{320}+\sqrt{10^{640}-1}} < \frac{1}{10^{320}}

5 1 0 321 \frac{5}{10^{321}} has 320 320 zeros, after decimal point. a number greater than it, should have less or equal number of zeros ( 320 320 or less). 1 1 0 320 \frac{1}{10^{320}} has 319 319 zeros, after decimal point. a number less than it, should have more number of zeros ( 320 320 or more).

Chris Lewis
Jan 11, 2021

Consider in general x n = 1 0 n 1 0 2 n 1 x_n=10^n - \sqrt{10^{2n}-1} . By binomial expansion,

We have x n = 1 0 n ( 1 1 1 0 2 n ) = 1 0 n ( 1 ( 1 1 2 1 0 2 n + ) ) = 1 0 n ( 1 2 1 0 2 n + ) = 1 2 1 0 n + = 5 × 1 0 n 1 + \begin{aligned} x_n &=10^n \left(1 - \sqrt{1-10^{-2n}} \right) \\ &=10^n \left(1-\left(1-\frac12 10^{-2n}+\cdots\right)\right) \\ &=10^n \left(\frac12 10^{-2n}+\cdots\right) \\ &=\frac12 10^{-n}+\cdots \\ &=5 \times 10^{-n-1}+\cdots \end{aligned}

which has n n zeroes immediately after the decimal point.

nice solution!

Antonije Mirkovic - 5 months ago
Hongqi Wang
Jan 12, 2021

10 640 1 ( 1 0 320 ) 2 2 × 1 0 320 × 1 2 × 1 0 320 + ( 1 2 × 1 0 320 ) 2 = ( 1 0 320 1 2 × 1 0 320 ) 2 = 1 0 320 1 2 × 1 0 320 1 0 320 10 640 1 1 2 × 1 0 320 = 0.5 E ( 320 ) \sqrt {{10}^{640} - 1} \\ \approx \sqrt {(10^{320})^2 - 2 \times 10^{320} \times \dfrac 1{2 \times 10^{320}} + (\dfrac 1{2 \times 10^{320}})^2} \\ = \sqrt {(10^{320} - \dfrac 1{2 \times 10^{320}})^2} \\ = 10^{320} - \dfrac 1{2 \times 10^{320}} \\ \therefore 10^{320} - \sqrt {{10}^{640} - 1} \approx \dfrac 1{2 \times 10^{320}} = 0.5E(-320)

Chew-Seong Cheong
Jan 12, 2021

Note that 1 0 320 1 0 640 1 = ( 1 0 320 1 0 640 1 ) ( 1 0 320 + 1 0 640 1 ) 1 0 320 + 1 0 640 1 = 1 1 0 320 + 1 0 640 1 10^{320} - \sqrt{10^{640}-1} = \dfrac {(10^{320} - \sqrt{10^{640}-1})(10^{320} + \sqrt{10^{640}-1})}{10^{320} + \sqrt{10^{640}-1}} = \dfrac 1{10^{320} + \sqrt{10^{640}-1}} and:

1 1 0 320 < 1 1 0 320 + 1 0 640 1 < 1 2 × 1 0 320 1 × 1 0 320 < 1 0 320 1 0 640 1 < 5 × 1 0 321 0. 00000 00000 Number of 0s = 319 1 < 1 0 320 1 0 640 1 < 0. 00000 00000 Number of 0s = 320 5 \begin{aligned} \frac 1{10^{320}} < & \frac 1{10^{320} + \sqrt{10^{640}-1}} < \frac 1{2 \times 10^{320}} \\ 1 \times 10^{-320} < & 10^{320} - \sqrt{10^{640}-1} < 5 \times 10^{-321} \\ 0.\underbrace{00000 \cdots 00000}_{\text{Number of 0s}=319}1 < & 10^{320} - \sqrt{10^{640}-1} < 0.\underbrace{00000 \cdots 00000}_{\text{Number of 0s}=320}5 \end{aligned}

The number of consecutive zeros after the decimal point of 1 0 320 1 0 640 1 10^{320} - \sqrt{10^{640}-1} is 320 \boxed{320} .

K T
Jan 12, 2021

Consider the function f ( x ) = x f(x)=\sqrt{x} Its derivative is f ( x ) = 1 2 x f'(x)=\frac{1}{2\sqrt{x}} We have f ( x + d x ) = f ( x ) + f ( x ) d x f(x+dx)=f(x)+f'(x)dx and to a very good approximation, we can set x = 1 0 640 x=10^{640} and replace d x dx by 1 -1 : 1 0 640 1 1 0 640 1 2 1 0 640 = 1 0 320 0.5 × 1 0 320 \sqrt{10^{640}-1}\approx \sqrt{10^{640}}-\frac{1}{2\sqrt{10^{640}}}=10^{320}-0.5×10^{-320} so that given expression is 1 0 320 1 0 640 1 0.5 × 1 0 320 10^{320}-\sqrt{10^{640}-1}\approx 0.5×10^{-320} which has 320 zeros between the decimal point and the 5.

For those questioning the accuracy of this

This is in fact a 1st order Taylor expansion of f ( x 1 ) f(x-1) at x = 1 0 640 x={10^{640}} . We could add subsequent terms and see their contribution vanish very quickly:

f ( x 1 ) = f ( x ) f ( x ) + f ( x ) 2 . . . + ( 1 ) n f ( n ) ( x ) n ! + . . . f(x-1)=f(x)-f'(x)+\frac{f''(x)}{2}-...+\frac{(-1)^nf^{(n)}(x)}{n!}+ ... using the derivatives

f ( x ) = x 0.5 , f ( x ) = 0.5 x 0.5 , f ( x ) = 0.25 x 1.5 , f ( 3 ) ( x ) = 0.375 x 2.5 f(x)=x^{0.5}, f'(x)=0.5x^{-0.5}, f''(x)=-0.25x^{-1.5}, f^{(3)}(x)=0.375x^{-2.5} etc

1 0 320 f ( x 1 ) = 0.5 × 1 0 320 + 0.125 × 1 0 960 + 0.375 / 6 × 1 0 1600 . . . 10^{320}-f(x-1)=0.5×10^{-320}+0.125×10^{-960}+0.375/6×10^{-1600}...

So after the 320 zeros comes '5', followed by 639 0's, followed by '125', followed by 638 0's, followed by '625', etc.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...