Number of zeros of an imprecise function

Algebra Level 4

Given a function f f that satisfies the equation ( x + 2 ) ( x + 1 ) f ( x + 2 ) + ( x + 1 ) f ( x + 1 ) + f ( x ) = 0 (x+2)(x+1)f(x+2)+(x+1)f(x+1)+f(x)=0 Find the maximum number of real zeros of the function g ( x ) = ( x + 1 ) ( x + 2 ) ( x + 3 ) ( x + 4 ) ( x + 5 ) ( x + 6 ) f ( x + 6 ) 2 ( x + 1 ) ( x + 2 ) ( x + 3 ) f ( x + 3 ) + f ( x ) + 1 2018 g(x)=(x+1)(x+2)(x+3)(x+4)(x+5)(x+6)f(x+6)- 2(x+1)(x+2)(x+3)f(x+3)+f(x)+\frac{1}{2018}


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Define f k ( x ) : = ( x + 1 ) ( x + 2 ) ( x + k ) f ( x + k ) f_k(x) := (x + 1)(x + 2) \dots (x + k)f(x + k) for k > 0 k > 0 . Then the given equation can be written f 2 ( x ) + f 1 ( x ) + f ( x ) = 0 f_2(x) + f_1(x) + f(x) = 0 , or equivalently f 2 ( x ) = f 1 ( x ) f ( x ) f_2(x) = -f_1(x) - f(x) . Replacing x x with x + k x + k and then multiplying throughout by ( x + 1 ) ( x + k ) (x + 1) \dots (x + k) , we have that for k > 2 k > 2 , f k ( x ) = f k 1 ( x ) f k 2 ( x ) f_k(x) = -f_{k - 1}(x) - f_{k - 2}(x) .

Therefore:

g ( x ) = f 6 ( x ) 2 f 3 ( x ) + f ( x ) + 1 / 2018 g(x) = f_6(x) - 2f_3(x) + f(x) + 1/2018

= f 5 ( x ) f 4 ( x ) 2 f 3 ( x ) + f ( x ) + 1 / 2018 \quad\quad = -f_5(x) - f_4(x) - 2f_3(x) + f(x) + 1/2018

= f 4 ( x ) + f 3 ( x ) f 4 ( x ) 2 f 3 ( x ) + f ( x ) + 1 / 2018 \quad\quad = f_4(x) + f_3(x) - f_4(x) - 2f_3(x) + f(x) + 1/2018

= f 3 ( x ) + f ( x ) + 1 / 2018 \quad\quad = -f_3(x) + f(x) + 1/2018

= f 2 ( x ) + f 1 ( x ) + f ( x ) + 1 / 2018 \quad\quad = f_2(x) + f_1(x) + f(x) + 1/2018

= 1 / 2018 \quad\quad = 1/2018

for all real x x , so g ( x ) g(x) has no real zeros.

Nice solution!

Arturo Presa - 2 years, 6 months ago
Arturo Presa
Nov 24, 2018

Let us define the shift operator and the identity operator in the following way: T f ( x ) = f ( x + 1 ) Tf(x)=f(x+1) and I f ( x ) = f ( x ) If(x)=f(x) , respectively. Then the given functional equation can be written in the form ( ( x + 2 ) ( x + 1 ) T 2 + ( x + 1 ) T + I ) f ( x ) = 0. ((x+2)(x+1)T^2+(x+1)T+I)f(x)=0. If you apply the operator ( x + 1 ) T I (x+1)T-I to both sides of the previous equation, we get the equation ( ( x + 1 ) ( x + 2 ) ( x + 3 ) T 3 I ) f ( x ) = 0. ((x+1)(x+2)(x+3)T^3-I)f(x)=0. Now applying the operator ( x + 1 ) ( x + 2 ) ( x + 3 ) T 3 I ) (x+1)(x+2)(x+3)T^3-I) to both sides of the last equation, we get the equation ( ( x + 1 ) ( x + 2 ) ( x + 3 ) ( x + 4 ) ( x + 5 ) ( x + 6 ) T 6 2 ( x + 1 ) ( x + 2 ) ( x + 3 ) T 3 + I ) f ( x ) = 0. ((x+1)(x+2)(x+3)(x+4)(x+5)(x+6)T^6- 2(x+1)(x+2)(x+3)T^3+I)f(x)=0. Therefore, the expression ( x + 1 ) ( x + 2 ) ( x + 3 ) ( x + 4 ) ( x + 5 ) ( x + 6 ) f ( x + 6 ) 2 ( x + 1 ) ( x + 2 ) ( x + 3 ) f ( x + 3 ) + f ( x ) (x+1)(x+2)(x+3)(x+4)(x+5)(x+6)f(x+6)- 2(x+1)(x+2)(x+3)f(x+3)+f(x) must be equal to zero for all possible values of x x . Then, the function g ( x ) g(x) has not real zeros. Thus the answer to the problem is 0 . \boxed{0}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...