Denote by the set of all positive integers. A function is such that for all positive integers and , the integer is non-zero and divides .
Then find the value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
f ( m ) + f ( n ) − m n ∣ m f ( m ) + n f ( n ) ⟹ 2 f ( n ) − n 2 ∣ 2 n f ( n ) ⟹ 2 f ( n ) − n 2 ∣ n 3 ⟹ 2 f ( 1 ) − 1 ∣ 1 ⟹ f ( 1 ) = 1
f ( m ) + f ( n ) − m n ∣ m f ( m ) + n f ( n ) ⟹ f ( n ) − n + 1 ∣ n f ( n ) + 1 ⟹ f ( n ) − n + 1 ∣ n 2 − n + 1 ⟹ f ( 5 ) − 4 ∣ 2 1 ⟹ f ( 5 ) ∈ { 7 , 1 1 , 2 5 }
2 f ( n ) − n 2 ∣ n 3 ⟹ 2 f ( 5 ) − 2 5 ∣ 1 2 5 ⟹ f ( 5 ) ∈ { 1 3 , 1 5 , 2 5 , 5 0 }
Hence, f ( 5 ) = 2 5 .