Cruising the right way

30 a 0 b 03 \large \overline{30a0b03}

Given that a a and b b are single digit non-negative integers, how many ordered pairs of ( a , b ) (a,b) are there such that the 7-digit integer above is divisible by 13?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Philip Lamkin
Jan 8, 2019

We're looking for a , b a,b such that 30 a 0 b 03 \overline{30a0b03} is divisible by 13. To do this, we'll look at powers of 10 mod 13.

1 0 0 1 m o d 13 1 0 1 10 m o d 13 3 m o d 13 1 0 2 30 m o d 13 4 m o d 13 1 0 3 40 m o d 13 1 m o d 13 1 0 4 10 m o d 13 3 m o d 13 1 0 5 30 m o d 13 4 m o d 13 1 0 6 40 m o d 13 1 m o d 13 \begin{aligned} &10^0\equiv 1\mod{13}\\&10^1\equiv 10\mod{13}\equiv{-3}\mod{13}\\&10^2\equiv -30\mod{13}\equiv{-4}\mod{13}\\&10^3\equiv -40\mod{13}\equiv{-1}\mod{13}\\&10^4\equiv -10\mod{13}\equiv{3}\mod{13}\\&10^5\equiv 30\mod{13}\equiv{4}\mod{13}\\&10^6\equiv 40\mod{13}\equiv{1}\mod{13}\\\end{aligned}

Now we can use this to get conditions on a a and b b . Specifically, we can reduce the number mod 13 using what we got above to 3 1 + 0 ( 3 ) + b ( 4 ) + 0 ( 1 ) + a 3 + 0 4 + 3 1 = 3 a 4 b + 6 . 3*1+0*(-3)+b*(-4)+0*(-1)+a*3+0*4+3*1 = \boxed{3a-4b+6}. Our condition then is that 3 a 4 b + 6 0 m o d 13 3a-4b+6\equiv 0\mod{13} . Solving for b b (using the fact that 4 1 = 10 m o d 13 4^{-1} = 10 \mod{13} ), we get b 4 1 ( 3 a + 6 ) 10 ( 3 a + 6 ) 4 a + 8 m o d 13. b \equiv 4^{-1}(3a+6) \equiv 10(3a+6) \equiv 4a+8\mod{13}.

This tells us that for each a a , there is exactly one b b that works. But we have to be careful, because b b is an integer mod 13, so it might not be a single digit. So now we explicitly calculate each solution pair when a a is a single digit to get

( 0 , 8 ) ( 1 , 12 ) ( 2 , 3 ) ( 3 , 7 ) ( 4 , 11 ) ( 5 , 2 ) ( 6 , 6 ) ( 7 , 10 ) ( 8 , 1 ) ( 9 , 5 ) \begin{aligned}&(0,8)\\&(1,12)\\&(2,3)\\&(3,7)\\&(4,11)\\&(5,2)\\&(6,6)\\&(7,10)\\&(8,1)\\&(9,5)\\\end{aligned}

Of these, 7 are single digit values for a a , so the answer is 7 \boxed{7} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...