Number Theory

Find the remainder when 33 1 62 331^{62} is divided by 2100.

361 (mod 2100) 361 \text{ (mod 2100)} 456 (mod 2300) 456 \text{ (mod 2300)} 567 (mod 2100) 567 \text{ (mod 2100)} 362 (mod 5678) 362 \text{ (mod 5678)}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 20, 2017

Relevant wiki: Euler's Theorem

Similar to @Ezra Manatad 's solution

33 1 62 33 1 62 mod λ ( 2100 ) (mod 2100) Since gcd ( 331 , 2100 ) = 1 , Euler’s theorem applies. 33 1 62 mod 60 (mod 2100) Carmichael’s lambda function λ ( 2100 ) = 60 (see note) 33 1 2 (mod 2100) 109561 (mod 2100) 361 (mod 2100) \begin{aligned} 331^{62} & \equiv 331^{\color{#3D99F6}62 \text{ mod }\lambda (2100)} \text{ (mod 2100)} & \small \color{#3D99F6} \text{Since }\gcd (331, 2100)=1 \text{, Euler's theorem applies.} \\ & \equiv 331^{\color{#3D99F6}62 \text{ mod }60} \text{ (mod 2100)} & \small \color{#3D99F6} \text{Carmichael's lambda function }\lambda(2100) = 60 \text{ (see note)} \\ & \equiv 331^2 \text{ (mod 2100)} \\ & \equiv 109561 \text{ (mod 2100)} \\ & \equiv \boxed{361} \text{ (mod 2100)} \end{aligned}


Note: Carmichael's lambda function

λ ( 2100 ) = lcm ( λ ( 2 2 ) , λ ( 3 ) , λ ( 5 2 ) , λ ( 7 ) ) = lcm ( 2 , 2 , 20 , 6 ) = 60 \begin{aligned} \lambda (2100) & = \text{lcm}\left(\lambda(2^2), \lambda(3), \lambda(5^2), \lambda(7) \right) \\ & = \text{lcm} \left(2, 2, 20, 6 \right) \\ & = 60 \end{aligned}

Ezra Manatad
Aug 20, 2017

lambda(2100)=LCM(6,2,20)=60

331^62 (mod 2100) =(331²)(331^60) (mod 2100) =331² (mod 2100) =109561 (mod 2100) =361 (mod 2100)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...