How many integral pair of satisfy ?
This question belongs to the set Number theory best problems
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
x 2 + 4 y 2 − 2 x y − 2 x − 4 y − 8 = ( x − y − 1 ) 2 + 3 ( y − 1 ) 2 − 1 2
⇒ ( x − y − 1 ) 2 + 3 ( y − 1 ) 2 − 1 2 = 0
⇒ ( x − y − 1 ) 2 + 3 ( y − 1 ) 2 = 1 2
As sum of squaring terms can't exceed 12 as R.H.S=12
⇒ − 2 ≤ ( y − 1 ) ≤ 2
⇒ − 1 ≤ y ≤ 3
As y is an integer
⇒ y ∈ − 1 , 0 , 1 , 2 , 3
Now check for each value of y in the above set such that x becomes an integer, we get;
( x , y ) ≡ ( 6 , 2 ) , ( 0 , 2 ) , ( 4 , 0 ) , ( − 2 , 0 ) , ( 4 , 3 ) , ( 0 , − 1 ) Therefore, the answer should be 6