Number Theory Gone mad!

Determine the remainder when

i = 0 2015 2 i 25 \large\ \sum _{ i=0 }^{ 2015 }{ \left\lfloor \frac { { 2 }^{ i } }{ 25 } \right\rfloor }

is divided by 100 100 .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Marco Brezzi
Jan 6, 2018

To simplify the problem, consider that by definition

n = n + { n } n=\lfloor n\rfloor + \{n\}

Hence

S = i = 0 2015 2 i 25 = i = 0 2015 2 i 25 S 1 i = 0 2015 { 2 i 25 } S 2 S=\displaystyle\sum_{i=0}^{2015} \left\lfloor\dfrac{2^i}{25}\right\rfloor=\underbrace{\displaystyle\sum_{i=0}^{2015} \dfrac{2^i}{25}}_{S_1}-\underbrace{\displaystyle\sum_{i=0}^{2015} \left\{\dfrac{2^i}{25}\right\}}_{S_2}

From the formula for a geometric series we get

S 1 = 2 2016 1 25 S_1=\dfrac{2^{2016}-1}{25}

For S 2 S_2 we'll see how 2 i 2^i behaves when considered m o d 25 \mod 25

i 2 i m o d 25 0 1 1 2 2 4 3 8 4 16 5 7 6 14 7 3 8 6 9 12 10 24 \begin{array}{|c|c|} \hline i & 2^i \mod 25\\ \hline 0&1\\ 1&2\\ 2&4\\ 3&8\\ 4&16\\ 5&7\\ 6&14\\ 7&3\\ 8&6\\ 9&12\\ 10&24\\ \hline \end{array}

o r d 25 ( 2 ) ϕ ( 25 ) ord_{25}(2)|\phi(25) , or o r d 25 ( 2 ) 20 ord_{25}(2)|20 and we can see that o r d 25 ( 2 ) > 10 ord_{25}(2)>10 so it must be 20 20 . Hence 2 2 is a primitive root modulo 25 25 and it generates ( Z / 25 Z ) (\mathbb{Z}/25\mathbb{Z})^* .

With this we can calculate S 2 S_2 , since if

2 j k m o d 25 0 < k < 25 2^j\equiv k \mod 25\qquad 0<k<25

Then

{ 2 j 25 } = { 25 m + k 25 } = k 25 \left\{\dfrac{2^j}{25}\right\}=\left\{\dfrac{25m+k}{25}\right\}=\dfrac{k}{25}

So S 2 S_2 can be subdivided in groups of 20 20 addends whose sum is

x ( Z / 25 Z ) x 25 = 10 \dfrac{\displaystyle\sum_{x\in(\mathbb{Z}/25\mathbb{Z})^*} x}{25}=10

There are 2016 20 = 100 \left\lfloor\dfrac{2016}{20}\right\rfloor=100 such groups

The last 16 16 addends add up to 185 25 \dfrac{185}{25}

Hence

S 2 = 10 1000 + 185 25 = 25185 25 S_2=10\cdot 1000+\dfrac{185}{25}=\dfrac{25185}{25}

Consequently

S = S 1 S 2 = 2 2016 25186 25 S=S_1-S_2=\dfrac{2^{2016}-25186}{25}

We now need S m o d 100 S \mod 100 , considering m o d 4 \mod 4 and m o d 25 \mod 25 separately

S 2 2016 25186 2 m o d 4 S\equiv 2^{2016}-25186 \equiv 2\mod 4

Consider the numerator of the fraction m o d 625 \mod 625

ϕ ( 625 ) = 500 2 2016 2 16 m o d 625 \phi(625)=500\Longrightarrow 2^{2016}\equiv 2^{16}\mod 625

2 16 25186 65536 186 536 186 350 m o d 625 2^{16}-25186\equiv 65536-186\equiv 536-186\equiv 350\mod 625

This is equivalent to

25 S = 625 n + 350 S = 25 n + 14 25S=625n+350\Longrightarrow S=25n+14

So

{ S 2 m o d 4 S 14 m o d 25 \begin{cases} S\equiv 2 \mod 4\\ S\equiv 14\mod 25\\ \end{cases}

And from CRT this implies that S 14 m o d 100 S\equiv \boxed{14}\mod 100

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...