Number Theory or Algebra? Part 10 - Finale

Find the number of tri-ordinates ( x , y , z ) (x, y, z) , in which x , y x, y and z z are all positive integers, which satisfy the equation

2 x + 3 3 4 y + 5 + 5 = z 2 2^{x +3} - 3\cdot4^{y+5} + 5 = z^{2}


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We can solve this problem by the properties of odd and even numbers. Let's begin.

2 x + 3 2^{x +3} is always an even number.

3 4 y + 5 3\cdot4^{y+5} is always an even number.

2 x + 3 3 4 y + 5 + 5 \therefore 2^{x +3} - 3\cdot4^{y+5} + 5 is always an odd number.

For the solution to exist, z z must be an odd integer.

So,

z 2 1 ( m o d 8 ) z^{2} \equiv 1 (mod 8) (This can be proved when z z is an odd integer.)

2 x + 3 3 4 y + 5 + 5 5 ( m o d 8 ) 2^{x +3} - 3\cdot4^{y+5} + 5 \equiv 5 (mod 8)

2 x + 3 3 4 y + 5 + 5 ≢ z 2 \therefore 2^{x +3} - 3\cdot4^{y+5} + 5 \not\equiv z^{2}

2 x + 3 3 4 y + 5 + 5 z 2 \therefore 2^{x +3} - 3\cdot4^{y+5} + 5 \neq z^{2}

Andrea Gallese
Jul 23, 2014

Let's solve this looking at congruence m o d 8 \bmod{8} . n 2 { 0 , 1 , 2 , 4 } m o d 8 n^2 \equiv \{ 0, 1, 2, 4 \} \bmod{8} While 2 x + 3 3 4 y + 5 + 5 5 m o d 8 2^{x+3} -3 \cdot 4^{y+5} + 5 \equiv 5 \bmod{8} Thus 5 n 2 n 5 \neq n^2 \;\forall n , there are no solutions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...