Number Theory Problem No.4

Given that:

1000 ! = 2 a × 3 b × 5 c × 7 d × 1 1 e × 1 3 f × . . . 1000! = 2^{a} \times 3^{b} \times 5^{c} \times 7^{d} \times 11^{e} \times 13^{f} \times...

where a a , b b , c c , d d , e e , and f f are all positive integers, calculate a b c + d + e + f a-b-c+d+e+f .

Note: The equation above is factoring 1000 ! 1000! , so there are no non-natural numbers appears in this problem.


The answer is 590.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 23, 2020

The exponent or power n p n_p of a prime factor p p in N ! N! is given by:

n p ( N ) = k = 1 log p N N p k n_p(N) = \sum_{k=1}^{\left \lfloor \log_p N \right \rfloor} \left \lfloor \frac N{p^k} \right \rfloor

For example,

n 2 ( 1000 ) = 1000 2 + 1000 4 + 1000 8 + 1000 16 + 1000 32 + 1000 64 + 1000 128 + 1000 256 + 1000 512 = 500 + 250 + 125 + 62 + 31 + 15 + 7 + 3 + 1 = 994 \begin{aligned} n_2(1000) & = \left \lfloor \frac {1000}2 \right \rfloor + \left \lfloor \frac {1000}4 \right \rfloor + \left \lfloor \frac {1000}8 \right \rfloor + \left \lfloor \frac {1000}{16} \right \rfloor + \left \lfloor \frac {1000}{32} \right \rfloor + \left \lfloor \frac {1000}{64} \right \rfloor + \left \lfloor \frac {1000}{128} \right \rfloor + \left \lfloor \frac {1000}{256} \right \rfloor + \left \lfloor \frac {1000}{512} \right \rfloor \\ & = 500 + 250 + 125 + 62 + 31 + 15 + 7 + 3 + 1 \\ & = 994 \end{aligned}

In computation, you can take the integer value of the previous term after divided by 2 2 . For example, 125 2 = 62 \left \lfloor \dfrac {125}2 \right \rfloor = 62 .

Similarly, n 3 ( 1000 ) = 498 n_3(1000) = 498 , n 5 ( 1000 ) = 249 n_5(1000) =249 , n 7 ( 1000 ) = 164 n_7(1000) = 164 , n 11 ( 1000 ) = 98 n_{11} (1000) = 98 , and n 13 ( 1000 ) = 81 n_{13}(1000) = 81 . Therefore a b c + d + e + f = 590 a-b-c+d+e+f = \boxed{590} .

To do the computation, I used a simple Excel spreadsheet

By using this formula:

n ! = k = 1 m a p ( k ) i = 1 l o g a p ( k ) n n a p ( k ) i \displaystyle n!= \prod_{k=1}^{m} a_{ p(k) }^{\displaystyle \sum_{i=1}^{⌊log_{a_{p(k)}n}⌋} ⌊\frac{n}{a_{p(k)}^{i}}⌋}

with m m is the number of prime number a p a_{p} in domain [ 2 , n ] [2,n] , a p ( k ) a_{p(k)} is the k t h k^{th} prime in that domain, and n n is the positive integer.

Calculation gives a b c + d + e + f = 590 a-b-c+d+e+f=\boxed{590} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...