Number Theory Question

Algebra Level 3

1 + 1.7 + 2.4 + 3.1 + + 999.9 = ? \left\lceil 1 \right\rceil + \left\lceil 1.7 \right\rceil + \left\lceil 2.4 \right\rceil + \left\lceil 3.1 \right\rceil+\ldots+\left\lceil 999.9 \right\rceil=?


The answer is 715285.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Kartik Sharma
Oct 6, 2014

Nice problem! We have to see a series going on here. It is an AP going on in the ceiling function. So, it is not just a simple series. As d = 0.7, after 10 terms, the term which we started our counting will get added by 7(0.7 * 10). In other words, this will be the series

1 + 1.7 + 2.4 + 3.1 + 3.8 + 4.5 + 5.2 + 5.9 + 6.6 + 7.3 + 8 + . . . . . + 999.9 \left\lceil 1 \right\rceil + \left\lceil 1.7 \right\rceil + \left\lceil 2.4 \right\rceil + \left\lceil 3.1 \right\rceil + \left\lceil 3.8 \right\rceil + \left\lceil 4.5 \right\rceil + \left\lceil 5.2 \right\rceil + \left\lceil 5.9 \right\rceil + \left\lceil 6.6 \right\rceil + \left\lceil 7.3 \right\rceil + \left\lceil 8 \right\rceil + ..... + \left\lceil 999.9 \right\rceil

Therefore, 10 A.P.'s with d = 7 go on simultaneously in the series.

Now our last term of the series i.e. 999.9 \left\lceil 999.9 \right\rceil corresponds to 5.9 \left\lceil 5.9 \right\rceil and so, it is the last term of the AP with first term as 6.

So, we can find the number of terms in the AP using its general term-

6 + (n-1)7 = 1000

n-1 = 142, n = 143

Now, using the sum formula of AP,

S = 143 ( 6 + 1000 ) 2 \frac{143(6 + 1000)}{2}

Similarly, for all the AP's with a = 6, 5, 4, 3, 2, 1; n = 143.

For the AP's with a = 7, 8; n = 142.

Hence, finally adding all the sums

143 ( 6 + 1000 ) 2 + 143 ( 6 + 1000 ) 2 + 143 ( 5 + 999 ) 2 + 143 ( 4 + 998 ) 2 + 143 ( 4 + 998 ) 2 + 143 ( 3 + 997 ) 2 + 143 ( 2 + 996 ) 2 + 143 ( 1 + 997 ) 2 + 142 ( 7 + 994 ) 2 + 142 ( 8 + 995 ) 2 = 715285 \frac{143(6 + 1000)}{2} + \frac{143(6 + 1000)}{2} + \frac{143(5 + 999)}{2} + \frac{143(4 + 998)}{2} + \frac{143(4 + 998)}{2} + \frac{143(3 + 997)}{2} + \frac{143(2 + 996)}{2} + \frac{143(1 + 997)}{2} + \frac{142(7 + 994)}{2} + \frac{142(8 + 995)}{2} = \boxed{715285}

Exactly Same Solution, It's one of the best questions on Brilliant ever.

Kushagra Sahni - 5 years, 8 months ago

Near about the same method. Nice question as well as solution

Shreyash Rai - 5 years, 5 months ago

{1+0.7k}=0.0 , 0.1, ..., 0.9 Then k=0,3,6,9,2,5,8,1,4,7 mod 10 So sums are 1+(1+7 1)+...+(1+7 142)+ 4+(4+7 1)+...+(4+7 142)+ 6+(6+7 1)+...+(6+7 142)+ 8+(8+7 1)+...+(8+7 141)+ 3+(3+7 1)+...+(3+7 142)+ 5+(5+7 1)+...+(5+7 142)+ 7+(7+7 1)+...+7 142+ 2+(2+7 1)+...+(2+7 142)+ 4+(4+7 1)+...+(4+7 142)+ 6+(6+7 1)+...+(6+7 142)= 143(498+501+503+505+500+ 502+497+499+501+503) -8-7 142= 143(500 10-2+1+3+5+2-3-1+1+3-7)-1=143(5000+2)-1=715286-1= 715285

Nikola Djuric - 4 years, 6 months ago
Samarpit Swain
Sep 22, 2015

In C++

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
#include <iostream>
#include<math.h>
using namespace std;

int main() {
     long double sum=0;

    for(long double x=1.0;x<=999.9;x+=0.7)
     { 
         sum+=ceil(x);
     }
     cout<<sum;

    return 0;
}

Output:

1
715285

Ankit Kumar Jain
Feb 28, 2016

I wrote the ceiling values and compared it with the natural number series i.e 1 , 2 , 3 , 4 , 5 , 6 1 , 2 , 3 , 4 , 5 , 6 .

I found out the difference in the values and subtracted it from the sum of the natural number series.

My solution goes as -

CLARIFICATION

I found out the number of terms using AP Formula.

Moderator note:

Good observation of a pattern. For completeness, you should further elaborate on the pattern of differences that you found, and justify why there has to be such a pattern.

Sergio Melo
Aug 7, 2020

The expression can be written like this: 1 + 1 + 0.7 + 1 + 1.4 + 1 + 2.1 + . . . + 1 + 998.9 \left\lceil 1 \right\rceil +\left\lceil 1+0.7 \right\rceil +\left\lceil 1+1.4 \right\rceil +\left\lceil 1+2.1 \right\rceil +...+\left\lceil 1+998.9 \right\rceil . Given that 998.9 0.7 = 1427 \frac { 998.9 }{ 0.7 } =1427 , then

1 + 1 + 0.7 + 1 + 1.4 + 1 + 2.1 + . . . + 1 + 998.9 \left\lceil 1 \right\rceil +\left\lceil 1+0.7 \right\rceil +\left\lceil 1+1.4 \right\rceil +\left\lceil 1+2.1 \right\rceil +...+\left\lceil 1+998.9 \right\rceil = k = 0 1427 1 + 0.7 k = k = 0 1427 ( 1 + 0.7 k ) =\sum _{ k=0 }^{ 1427 }{ \left\lceil 1+0.7k \right\rceil } =\sum _{ k=0 }^{ 1427 }{ (1+\left\lceil 0.7k \right\rceil ) }

= 1428 + k = 1 1427 0.7 k =1428+\sum _{ k=1 }^{ 1427 }{ \left\lceil 0.7k \right\rceil } .

Let´s solve the sum. With the first 10 terms of 0.7 k \left\lceil 0.7k \right\rceil : 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, its sum (43) and 1427 10 = 142.7 \frac { 1427 }{ 10 } =142.7 , k = 1 1427 0.7 k \sum _{ k=1 }^{ 1427 }{ \left\lceil 0.7k \right\rceil } is modified to

k = 1 10 0.7 k + k = 1 10 0.7 k + 7 + k = 1 10 0.7 k + 14 + . . . + k = 1 10 0.7 k + 7 ( n 1 ) + . . . + k = 1 10 0.7 k + 987 142 s u m s + k = 1 7 0.7 k + 994 \underbrace { \sum _{ k=1 }^{ 10 }{ \left\lceil 0.7k \right\rceil } +\sum _{ k=1 }^{ 10 }{ \left\lceil 0.7k+7 \right\rceil } +\sum _{ k=1 }^{ 10 }{ \left\lceil 0.7k+14 \right\rceil } +...+\sum _{ k=1 }^{ 10 }{ \left\lceil 0.7k+7(n-1) \right\rceil } +...+\sum _{ k=1 }^{ 10 }{ \left\lceil 0.7k+987 \right\rceil } }_{ 142\quad sums } +\sum _{ k=1 }^{ 7 }{ \left\lceil 0.7k+994 \right\rceil } . In this case n n is the number of the sum.

Simplifying the equation above

142 k = 1 10 0.7 k + 10 k = 1 141 7 k + k = 1 7 994 + k = 1 7 0.7 k 142\sum _{ k=1 }^{ 10 }{ \left\lceil 0.7k \right\rceil } +10\sum _{ k=1 }^{ 141 }{ 7k } +\sum _{ k=1 }^{ 7 }{ 994 } +\sum _{ k=1 }^{ 7 }{ \left\lceil 0.7k \right\rceil }

We know that k = 1 10 0.7 k = 43 \sum _{ k=1 }^{ 10 }{ \left\lceil 0.7k \right\rceil } =43 , therefore the answer is

1428 + 142 43 + 10 7 ( 141 142 2 ) + 7 994 + ( 43 7 7 6 ) = 1428 + 6106 + 700770 + 6958 + 23 = 715285 1428+142*43+10*7(\frac { 141*142 }{ 2 } )+7*994+(43-7-7-6)= 1428+ 6106+700770+6958+23= \boxed { 715285 }

Carsten Meyer
Sep 10, 2019

Let's tackle it with modulus! Recall that for any rational number, m n = m n m o d ( m , n ) n + 1 { 1 m o d ( m , n ) = 0 0 otherwise , m Z , n N \left\lceil \frac{m}{n}\right\rceil=\frac{m}{n} - \frac{\mod(m,\:n)}{n} + 1-\begin{cases} 1&\mod(m,\:n)=0\\ 0&\text{otherwise} \end{cases},\qquad m\in\mathbb{Z},\quad n\in\mathbb{N}

For simplicity, let N : = 1427 N:=1427 . Then we can rewrite the given series: \[\begin{align} S&:=\sum_{k=0}^N\left\lceil 1+\frac{7k}{10}\right\rceil=\sum_{k=0}^N\green{1+1}+\frac{7k}{10}-\frac{\mod(7k,\:10)}{10}-\begin{cases} \red{1}&\mod(7k,\:10)=0\\ 0&\text{otherwise} \end{cases}\\

&=\green{2(N+1)}+\frac{7N(N+1)}{10\cdot 2}-\red{ \left\lfloor\frac{N}{10}+1\right\rfloor }-\frac{1}{10}\sum_{k=0}^N\mod(7k,\:10)&(*) \end{align}\] The remaining part of the sum is tricky. Notice that m o d ( 7 k , 10 ) \mod(7k,\:10) has a period of 10: k 0 1 2 3 4 5 6 7 8 9 10 m o d ( 7 k , 10 ) 0 7 4 1 8 5 2 9 6 3 0 \begin{array}{|c|rrrrrrrrrrrr|} \hline k&0&1&2&3&4&5&6&7&8&9&10&\ldots\\ \hline \mod(7k,\:10)&0&7&4&1&8&5&2&9&6&3&0&\ldots\\ \hline \end{array} k = 0 9 m o d ( 7 k , 10 ) = k = 0 9 k = 9 ( 9 + 1 ) 2 = 45 \begin{aligned} \Rightarrow &&\sum_{k=0}^9\mod(7k,\:10)&=\sum_{k=0}^9k=\frac{9(9+1)}{2}=45 \end{aligned} As long as we sum over a whole period, we will always get 45 45 . Our sum consists of 142 142 periods plus a rest, or (to make things easier) it shall consist of 143 143 periods minus a rest: k = 0 N m o d ( 7 k , 10 ) = 143 45 m o d ( 7 1428 , 10 ) m o d ( 7 1429 , 10 ) = 143 45 6 3 = 6426 \begin{aligned} \sum_{k=0}^N\mod(7k,\:10)&=143\cdot 45-\mod(7\cdot 1428,10)-\mod(7\cdot 1429,10)\\ &=143\cdot 45-6-3=6426 \end{aligned}

Pluck that value and N = 1427 N=1427 into ( ) (*) , to get S = 715285 S=\boxed{715285}

Curtis Clement
Feb 14, 2015

Now lets first calculate the arithmetic progression without the ceiling function ( f(x)), then sum what is added on from rounding. Step 1: let n {n} = number of terms such that n {n} = 999.9 1 0.7 \frac{999.9 -1}{0.7} +1 = 1428, a {a} = 1st term = 1, d {d} = common difference = 0.7. Now: s n = n 2 ( 2 a + ( n 1 ) d ) = 714642.6 < f ( x ) s_{n} = \frac{n}{2} (2a +(n-1)d) = 714642.6 < f(x) The amount added on each time repeats in a cycle mod (10) (as 0.7 × \times 10 = 7) as follows: (0 + 0.3 + 0.6 + 0.9 + 0.2 + 0.5 + 0.8 + 0.1 + 0.4 + 0.7) = 4.5. It is easy to see that 1428 10 \frac{1428}{10} = 142 r8 f ( x ) = 714642.6 + ( 4.5 × 142 ) + 3.4 = 715285 \therefore\ f(x) = 714642.6 + (4.5\times\ 142) + 3.4 = \boxed{715 285}

Great problem! :D

Jack Cornish
May 8, 2016

The pattern 1 , 2 , 3 , 4 , 4 , 5 , 6 , 6 , 7 , 8 , 8 , 1,2,3,4,4,5,6,6,7,8,8,\ldots continues in the sequence. Notice that all terms congruent to 1 , 4 , 6 1,4,6 mod 7 7 are counted twice except for 1 1 . There are a total of 143 143 of the 4 , 6 4,6 mod 7 7 pairs and a total of 142 142 of the 1 1 mod 7 7 pairs, so therefore the answer is 1001 ( 1000 ) 2 + 142 ( 8 + 995 2 ) + 143 ( 6 + 1000 2 + 4 + 998 2 ) = 715285 . \dfrac{1001(1000)}{2}+142 \left(\dfrac{8+995}{2}\right)+143\left(\dfrac{6+1000}{2}+\dfrac{4+998}{2} \right) = \boxed{715285}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...