Number Theory Question by Mithil Shah # 2

Determine the smallest possible positive integer x, whose last decimal digit is 6 and if we erase this last 6 and put it in front of the remaining digits, we get four times x.


The answer is 153846.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Marco Brezzi
Sep 9, 2017

Let

x = 10 a + 6 x=10a+6

After the operation we get

6 1 0 m + a 6\cdot 10^m+a

Where m m is the number of digits of a a . It is given that

6 1 0 m + a = 4 ( 10 a + 6 ) 6\cdot 10^m+a=4(10a+6)

Solving for a a

a = 2 ( 1 0 m 4 ) 13 a=\dfrac{2(10^m-4)}{13}

Checking powers of 10 10 modulo 13 13

{ 1 0 1 10 m o d 13 1 0 2 9 m o d 13 1 0 3 12 m o d 13 1 0 4 3 m o d 13 1 0 5 4 m o d 13 \begin{cases} 10^1\equiv 10\mod 13\\ 10^2\equiv 9\mod 13\\ 10^3\equiv 12\mod 13\\ 10^4\equiv 3\mod 13\\ 10^5\equiv 4\mod 13 \end{cases}

m = 5 \Longrightarrow m=5 is the smallest possible, which gives

a = 2 ( 1 0 5 4 ) 13 = 15384 a=\dfrac{2(10^5-4)}{13}=15384

Hence

x = 15384 10 + 6 = 153846 x=15384\cdot 10+6=\boxed{153846}


15384 6 4 = 6 15384 15384\color{#D61F06}6\color{#333333}\cdot 4=\color{#D61F06}6\color{#333333}15384

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...