Numbers Battle

Algebra Level 1

1 0 1998 + 1 1 0 1999 + 1 \large \frac{10^{1998} + 1}{10^{1999} + 1}

1 0 1999 + 1 1 0 2000 + 1 \large \frac{10^{1999} + 1}{10^{2000} + 1}

Which value is larger?

Try not to use a calculator.

1 0 1999 + 1 1 0 2000 + 1 \large \frac{10^{1999} + 1}{10^{2000} + 1} 1 0 1998 + 1 1 0 1999 + 1 \large \frac{10^{1998} + 1}{10^{1999} + 1}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Consider

1 0 1998 + 1 1 0 1999 + 1 1 0 1999 + 1 1 0 2000 + 1 = ( 1 0 1998 + 1 ) ( 1 0 2000 + 1 ) ( 1 0 1999 + 1 ) 2 = 1 0 3998 + 1 0 1998 + 1 0 2000 + 1 1 0 3998 + 2 1 0 1999 + 1 = = 1 0 3998 + 101 1 0 1998 + 1 1 0 3998 + 20 1 0 1998 + 1 > 1 1 0 1998 + 1 1 0 1999 + 1 > 1 0 1999 + 1 1 0 2000 + 1 \small \frac {\boxed{\dfrac {10^{1998}+1}{10^{1999}+1}}}{\dfrac {10^{1999}+1}{10^{2000}+1}} = \frac {\left(10^{1998}+1 \right)\left(10^{2000}+1\right)}{\left(10^{1999}+1\right)^2} = \frac {10^{3998}+10^{1998}+10^{2000}+1}{10^{3998}+2\cdot 10^{1999}+1} = = \frac {10^{3998}+ \blue{101 \cdot 10^{1998}}+1}{10^{3998}+\blue{20\cdot 10^{1998}}+1} > 1 \\ \implies \boxed{\frac {10^{1998}+1}{10^{1999}+1}} > \frac {10^{1999}+1}{10^{2000}+1}


Solution using @Barry Leung 's approach: Define f ( x ) f(x) as follows:

f ( x ) = 1 0 x + 1 1 0 x + 1 + 1 = 1 + 1 1 0 x 10 + 1 1 0 x = 1 9 10 + 1 1 0 x f(x) = \frac {10^x +1}{10^{x+1}+1} = \frac {1+\frac 1{10^x}}{10+\frac 1{10^x}} = 1 - \frac 9{10+\frac 1{10^x}}

This means that the larger the x x , the smaller the f ( x ) f(x) . Therefore f ( 1998 ) > f ( 1999 ) \boxed{f(1998)} > f(1999) .

Barry Leung
Aug 8, 2020

We can use functions to help us solve this problem.

The above values can be represented as f ( x ) = 1 0 x + 1 1 0 x + 1 + 1 \large f(x) = \frac {10^{x} + 1 }{10^{x+1} + 1} , where they are f ( 1998 ) f(1998) and f ( 1999 ) f(1999) respectively.

We can rewrite the function as f ( x ) = 1 0 x + 1 10 × 1 0 x + 1 + 9 9 \large f(x) = \frac{10^{x} + 1 }{10 \times 10^{x} + 1 + 9 - 9} , this expression is equivalent to f ( x ) = 1 0 x + 1 10 × ( 1 0 x + 1 ) 9 \large f(x) = \frac{10^{x} + 1}{10 \times {(10^{x} + 1)} - 9} .

And to maximize the value of this function means minimizing the value of its reciprocal, therefore, we have 10 × ( 1 0 x + 1 ) 9 1 0 x + 1 \large \frac{10 \times {(10^{x} + 1)} - 9}{10^{x} + 1} .

We can split the fraction into 10 9 1 0 x + 1 \large 10 - \frac {9}{10^{x} + 1} .

From here we want 9 1 0 x + 1 \large \frac{9}{10^{x} + 1} to be as big as possible so that 10 9 1 0 x + 1 \large 10 - \frac {9}{10^{x} + 1} can be as small as possible.

To maximize 9 1 0 x + 1 \large \frac{9}{10^{x} + 1} , we need to minimize the denominator, this means a smaller value of 1 0 x + 1 \large 10^{x} + 1 and consequently a smaller value of x x .

In our problem, we have f ( 1998 ) f(1998) and f ( 1999 ) f(1999) , and since 1998 < 1999, f ( 1998 ) f(1998) is bigger.

So our answer is 1 0 1998 + 1 1 0 1999 + 1 \large \frac{10^{1998} + 1}{10^{1999} + 1} .

Check the solution I propose for your approach. Much easier.

Chew-Seong Cheong - 10 months, 1 week ago

Arg... I had it right, but the choices for the solution were flipped from the order they were shown in the problem, and I wasn't paying attention. :-P

Erin Schnaedter - 8 months, 3 weeks ago

Log in to reply

That almost got me too!

Noah Lidell - 6 months, 3 weeks ago

1 0 1998 + 1 1 0 1999 + 1 1 0 1999 + 1 1 0 2000 + 1 \dfrac {10^{1998}+1}{10^{1999}+1}-\dfrac {10^{1999}+1}{10^{2000}+1}

81 × 1 0 1998 ( 1 0 1999 + 1 ) ( 1 0 2000 + 1 ) > 0 \dfrac {81\times 10^{1998}}{(10^{1999}+1)(10^{2000}+1)}>0

So, 1 0 1998 + 1 1 0 1999 + 1 > 1 0 1999 + 1 1 0 2000 + 1 \boxed {\dfrac {10^{1998}+1}{10^{1999}+1}>\dfrac {10^{1999}+1}{10^{2000}+1}}

Sir, what do you think of my solution?

Barry Leung - 10 months, 1 week ago
Chris Olston
Sep 1, 2020

We can hide most of the complexity (and also obtain a more general solution) by letting x = 1 0 1998 x = 10^{1998} . The two fractions become x + 1 10 x + 1 \frac{x+1}{10x+1} and 10 x + 1 100 x + 1 \frac{10x+1}{100x+1} respectively. Then we can ask whether x + 1 10 x + 1 > 10 x + 1 100 x + 1 \frac{x+1}{10x+1} > \frac{10x+1}{100x+1} , which simplifies to x > 0 x > 0 . Clearly our x is bigger than 0, so the first fraction is the larger one.

Ricardo Mejías
Nov 25, 2020

(\frac {1}{1 + \frac {1}{x}}/)

Soumo Mukherjee
Oct 18, 2020

Let 1 0 1999 + 1 1 0 2000 + 1 \displaystyle \frac{10^{1999}+1}{10^{2000}+1} = 1 0 y 1 + 1 1 0 y + 1 \displaystyle \frac{10^{y-1}+1}{10^y+1} = 1 0 y + 10 10 ( 10 y + 1 ) \displaystyle \frac{10^y+10}{10(10y+1)}

Similarly 1 0 1998 + 1 1 0 1999 + 1 \displaystyle \frac{10^{1998}+1}{10^{1999}+1} = 1 0 y 2 + 1 1 0 y 1 + 1 \displaystyle \frac{10^{y-2}+1}{10^{y-1}+1} = 1 0 y + 1 0 2 10 ( 10 y + 1 ) \displaystyle \frac{10^y+10^2}{10(10y+1)}

Clearly 1 0 y + 1 0 2 10 ( 10 y + 1 ) \displaystyle \frac{10^y+10^2}{10(10y+1)} > 1 0 y + 10 10 ( 10 y + 1 ) \displaystyle \frac{10^y+10}{10(10y+1)}

Hence 1 0 1998 + 1 1 0 1999 + 1 \displaystyle \frac{10^{1998}+1}{10^{1999}+1} > 1 0 1999 + 1 1 0 2000 + 1 \displaystyle \frac{10^{1999}+1}{10^{2000}+1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...