Numbers swap

5 × A B C D E = 8 × D E A B C 5\times \overline{{\color{#D61F06}ABC}{\color{#3D99F6}DE}} =8\times \overline{{\color{#3D99F6}DE}{\color{#D61F06}ABC}}

If the last 2 digits ( D E \overline{{\color{#3D99F6}DE}} ) of a 5-digit number A B C D E \overline{{\color{#D61F06}ABC}{\color{#3D99F6}DE}} are swapped to the front, then a new 5-digit number D E A B C \overline{{\color{#3D99F6}DE}{\color{#D61F06}ABC}} is formed. The value of the new number decreases and the above equation holds.

Find the minimum value of the 5-digit number A B C D E \overline{{\color{#D61F06}ABC}{\color{#3D99F6}DE}} .

Note: A , D 0 A, D\neq 0


The answer is 19512.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chan Lye Lee
Jan 5, 2019

Let x = A B C x=\overline{{\color{#D61F06}ABC}} and y = D E y=\overline{{\color{#3D99F6}DE}} .

5 × A B C D E = 8 × D E A B C 5\times \overline{{\color{#D61F06}ABC}{\color{#3D99F6}DE}} =8\times \overline{{\color{#3D99F6}DE}{\color{#D61F06}ABC}}

implies that 5 ( 100 x + y ) = 8 ( 1000 y + x ) 5\left(100x+y \right) = 8\left(1000y+x\right)

Hence, 492 x = 7995 y 492x=7995y or equivalently, x y = 65 4 = 130 8 = 195 12 \frac{x}{y}=\frac{65}{4}= \frac{130}{8}=\frac{195}{12} .

This means that the corresponding minimum value of the 3-digit number x = 195 x=195 and 2-digit number y = 12 y=12 . So A B C D E = 19512 \overline{{\color{#D61F06}ABC}{\color{#3D99F6}DE}}=\boxed{19512} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...