Numbers that makes 96 96 are \cdots

If n 2 + 96 \large n^2 +96 is a perfect square, n N \large n \in\mathbb N , and S S be the sum of possible values of n \large n .

Which of the following value is true for S + 6 S+6 ?

44 48 46 40 34

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Naren Bhandari
Aug 30, 2017

Since we have,

n 2 + 96 \large n^2 +96 is perfect square.

Let the perfect square number be p 2 \large p^2 . Then p 2 = n 2 + 96 = p 2 n 2 = 96 = ( p + n ) ( p n ) = 96 \large p^2 = n^2 +96 = p^2 -n^2 = 96 = (p+n)(p-n) = 96 96 \large 96 can be written in the following ways

( p + n ) ( p n ) = 96 × 1 \large (p+n)(p-n) = 96\times1

p = 97 2 \large \Rightarrow p = \frac{97}{2} and n = 95 2 \large n = \frac{95}{2}

( p + n ) ( p n ) = 48 × 2 \large (p+n)(p-n) = 48\times2 p = 25 \large \Rightarrow p = 25 and n = 23 N \large {\color{#3D99F6}n =23 \in N }

( p + n ) ( p n ) = 32 × 3 \large (p+n)(p-n) = 32\times3

p = 35 2 \large \Rightarrow p =\frac{35}{2} and n = 29 2 \large n = \frac{29}{2}

( p + n ) ( p n ) = 24 × 4 \large (p+n)(p-n) = 24\times 4

p = 11 \large \Rightarrow p = 11 and n = 10 N \large {\color{#3D99F6}n = 10 \in N}

( p + n ) ( p n ) = 16 × 6 \large (p+n)(p-n) = 16\times 6

p = 11 \large \Rightarrow p = 11 and n = 5 N \large {\color{#3D99F6}n = 5 \in N}

( p + n ) ( p n ) = 12 × 8 \large (p+n)(p-n) = 12\times 8 p = 10 \large p = 10 and n = 2 N \large {\color{#3D99F6}n = 2 \in N}

S = 2 + 10 + 23 + 5 \large \Rightarrow S = 2 +10+23+5

Therefore,

S + 6 = 40 + 6 = 46 \large S +6 = 40+6 = \boxed{46}

Áron Bán-Szabó
Aug 30, 2017

n 2 < n 2 + 96 n^2<n^2+96 \normalsize Since n 2 + 96 < ( n + 10 ) 2 = n 2 + 20 n + 100 n^2+96<(n+10)^2=n^2+20n+100 , n 2 + 96 = { ( n + 1 ) 2 ( n + 2 ) 2 ( n + 3 ) 2 ( n + 9 ) 2 n^2+96=\begin{cases} (n+1)^2 \\ (n+2)^2 \\ (n+3)^2 \\ \vdots \\ (n+9)^2 \end{cases}

\normalsize Let's take a look at the options.

n 2 + 96 = ( n + 1 ) 2 \large n^2+96=(n+1)^2 n 2 + 96 = ( n + 1 ) 2 = n 2 + 2 n + 1 96 = 2 n + 1 95 = 2 n n = 95 2 \begin{aligned} n^2+96 & = (n+1)^2 \\ & = n^2+2n+1 \\ 96 & = 2n+1 \\ 95 & = 2n \\ n & =\dfrac{95}{2} \end{aligned}

\normalsize Since 95 2 ∉ N \dfrac{95}{2} \not \in N , this case doesn't give any solution.

n 2 + 96 = ( n + 2 ) 2 \large n^2+96=(n+2)^2 n 2 + 96 = ( n + 2 ) 2 = n 2 + 4 n + 4 96 = 4 n + 4 92 = 4 n n = 23 \begin{aligned} n^2+96 & = (n+2)^2 \\ & = n^2+4n+4 \\ 96 & = 4n+4 \\ 92 & = 4n \\ n & =23 \end{aligned}

\normalsize Thus the unique solution in this case is 23 23 .

n 2 + 96 = ( n + 3 ) 2 \large n^2+96=(n+3)^2 n 2 + 96 = ( n + 3 ) 2 = n 2 + 6 n + 9 96 = 6 n + 9 87 = 6 n n = 29 2 \begin{aligned} n^2+96 & = (n+3)^2 \\ & = n^2+6n+9 \\ 96 & = 6n+9 \\ 87 & = 6n \\ n & =\dfrac{29}{2} \end{aligned}

\normalsize Since 29 2 ∉ N \dfrac{29}{2} \not \in N , this case doesn't give any solution.

n 2 + 96 = ( n + 4 ) 2 \large n^2+96=(n+4)^2 n 2 + 96 = ( n + 4 ) 2 = n 2 + 8 n + 16 96 = 8 n + 16 80 = 8 n n = 10 \begin{aligned} n^2+96 & = (n+4)^2 \\ & = n^2+8n+16 \\ 96 & = 8n+16 \\ 80 & = 8n \\ n & =10 \end{aligned}

\normalsize Thus the unique solution in this case is 10 10 .

n 2 + 96 = ( n + 5 ) 2 \large n^2+96=(n+5)^2 n 2 + 96 = ( n + 5 ) 2 = n 2 + 10 n + 25 96 = 10 n + 25 71 = 10 n n = 71 10 \begin{aligned} n^2+96 & = (n+5)^2 \\ & = n^2+10n+25 \\ 96 & = 10n+25 \\ 71 & = 10n \\ n & =\dfrac{71}{10} \end{aligned}

\normalsize Since 71 10 ∉ N \dfrac{71}{10} \not \in N , this case doesn't give any solution.

n 2 + 96 = ( n + 6 ) 2 \large n^2+96=(n+6)^2 n 2 + 96 = ( n + 6 ) 2 = n 2 + 12 n + 36 96 = 12 n + 36 60 = 12 n n = 5 \begin{aligned} n^2+96 & = (n+6)^2 \\ & = n^2+12n+36 \\ 96 & = 12n+36 \\ 60 & = 12n \\ n & =5 \end{aligned}

\normalsize Thus the unique solution in this case is 5 5 .

n 2 + 96 = ( n + 7 ) 2 \large n^2+96=(n+7)^2 n 2 + 96 = ( n + 7 ) 2 = n 2 + 14 n + 49 96 = 14 n + 49 47 = 14 n n = 47 14 \begin{aligned} n^2+96 & = (n+7)^2 \\ & = n^2+14n+49 \\ 96 & = 14n+49 \\ 47 & = 14n \\ n & =\dfrac{47}{14} \end{aligned}

\normalsize Since 47 14 ∉ N \dfrac{47}{14} \not \in N , this case doesn't give any solution.

n 2 + 96 = ( n + 8 ) 2 \large n^2+96=(n+8)^2 n 2 + 96 = ( n + 8 ) 2 = n 2 + 16 n + 64 96 = 16 n + 64 32 = 16 n n = 2 \begin{aligned} n^2+96 & = (n+8)^2 \\ & = n^2+16n+64 \\ 96 & = 16n+64 \\ 32 & = 16n \\ n & =2 \end{aligned}

\normalsize Thus the unique solution in this case is 2 2 .

n 2 + 96 = ( n + 9 ) 2 \large n^2+96=(n+9)^2 n 2 + 96 = ( n + 9 ) 2 = n 2 + 18 n + 81 96 = 18 n + 81 15 = 18 n n = 15 18 \begin{aligned} n^2+96 & = (n+9)^2 \\ & = n^2+18n+81 \\ 96 & = 18n+81 \\ 15 & = 18n \\ n & =\dfrac{15}{18} \end{aligned}

\normalsize Since 15 18 ∉ N \dfrac{15}{18} \not \in N , this case doesn't give any solution.


Therefor the answer is S + 6 = 23 + 10 + 5 + 2 + 6 = 46 S+6=23+10+5+2+6=\boxed{46} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...