Numerical puzzle, №3

Logic Level 3

A + B × C + D × ( E + F ) = G H I \overline{\textcolor{#D61F06}{A}}+\overline{\textcolor{#20A900}{B}}\times\overline{\textcolor{#3D99F6}{C}}+\overline{\textcolor{#EC7300}{D}}\times\left({\overline{\textcolor{#69047E}{E}}+\overline{\textcolor{#333333}{F}}}\right)=\overline{\textcolor{#E81990}{G}\textcolor{#BA33D6}{H}\textcolor{grey}{I}} Find sum of maximal and minimal value of G H I \overline{\textcolor{#E81990}{G}\textcolor{#BA33D6}{H}\textcolor{grey}{I}} , where A , B , , H , I \textcolor{#D61F06}{A},\textcolor{#20A900}{B},\dots,\textcolor{#BA33D6}{H},\textcolor{grey}{I} are distinct digits, but G 0 \textcolor{#E81990}{G} \neq 0 .


The answer is 254.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brute force using Wolfram Mathematica, but this easily could have been done in other computer languages.

Tally [ Sort [ Table [ r = p [ [ 1 ] ] + p [ [ 2 ] ] p [ [ 3 ] ] + p [ [ 4 ] ] ( p [ [ 5 ] ] + p [ [ 6 ] ] ) ; s = 100 p [ [ 7 ] ] + 10 p [ [ 8 ] ] + p [ [ 9 ] ] ; If [ r = s s 100 , s , Nothing ] , { p , Permutations [ Range [ 0 , 9 ] , { 9 } ] } ] ] ] \text{Tally}[\text{Sort}[\text{Table}[r=p[[1]]+p[[2]] p[[3]]+p[[4]] (p[[5]]+p[[6]]);s=100 p[[7]]+10 p[[8]]+p[[9]]; \\ \text{If}[r=s\land s\geq 100,s,\text{Nothing}], \\ \{p,\text{Permutations}[\text{Range}[0,9],\{9\}]\}]]]

( 102 52 103 96 104 80 105 72 106 80 107 80 108 44 109 48 120 52 123 44 124 48 125 44 126 28 127 12 128 8 130 36 132 24 134 16 135 12 136 4 140 44 142 16 143 12 146 4 150 16 152 8 ) \left( \begin{array}{cc} 102 & 52 \\ 103 & 96 \\ 104 & 80 \\ 105 & 72 \\ 106 & 80 \\ 107 & 80 \\ 108 & 44 \\ 109 & 48 \\ 120 & 52 \\ 123 & 44 \\ 124 & 48 \\ 125 & 44 \\ 126 & 28 \\ 127 & 12 \\ 128 & 8 \\ 130 & 36 \\ 132 & 24 \\ 134 & 16 \\ 135 & 12 \\ 136 & 4 \\ 140 & 44 \\ 142 & 16 \\ 143 & 12 \\ 146 & 4 \\ 150 & 16 \\ 152 & 8 \\ \end{array} \right)

Reading the Mathematica expression from left-to-right: Tally the frequencies of the sorted values of the table generated by computing the left hand side and the right hand side of the problem equation, then comparing the LHS and RHS for equality and for the RHS being greater or equal to 100, if so, then emit the RHS otherwise emit nothing by iterating over the permutations of the single digit integers taken nine digits at a time.

What do the second column elements indicate? I don't know Wolfram Mathematica.

A Former Brilliant Member - 2 years, 1 month ago

The number of times that value occurred while working through the permutations of the digits taken 9 at a time. The tally function reduces a list of values to a list of values with that value's frequency. I appended a English translation of the Wolfram Mathematica expression to the original solution.

A Former Brilliant Member - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...