Numerical solution..

Algebra Level 3

Let a 1 , a 2 , a 3 , , a 101 a_1, a_2, a_3, \cdots, a_{101} be positive real numbers with a sum s s . Find the minimum possible value of the expression

s s a 1 + s s a 2 + s s a 3 + + s s a 101 . \frac {s}{s-a_1} + \frac {s}{s-a_2} + \frac s{s-a_3} + \cdots +\frac {s}{s-a_{101}}.


The answer is 102.01.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 12, 2018

Using Hölder's inequality as follows:

( s s a 1 + s s a 2 + s s a 3 + + s s a 101 ) 1 2 ( s a 1 + s a 2 + s a 3 + + s a 101 ) 1 2 s 1 2 + s 1 2 + s 1 2 + + s 1 2 Number of s 1 2 = 101 Squaring both sides ( s s a 1 + s s a 2 + s s a 3 + + s s a 101 ) ( 100 s ) 10 1 2 s s s a 1 + s s a 2 + s s a 3 + + s s a 101 10201 101 = 102.01 \begin{aligned} \left(\frac s{s-a_1} + \frac s{s-a_2} + \frac s{s-a_3} + \cdots + \frac s{s-a_{101}} \right)^\frac 12 \left(s-a_1 + s - a_2 + s - a_3 + \cdots + s - a_{101}\right)^\frac 12 & \ge \underbrace{s^\frac 12 + s^\frac 12 + s^\frac 12 + \cdots + s^\frac 12}_{\text{Number of }s^\frac 12 = 101} & \small \color{#3D99F6} \text{Squaring both sides} \\ \left(\frac s{s-a_1} + \frac s{s-a_2} + \frac s{s-a_3} + \cdots + \frac s{s-a_{101}} \right) \left(100s \right) & \ge 101^2s \\ \frac s{s-a_1} + \frac s{s-a_2} + \frac s{s-a_3} + \cdots + \frac s{s-a_{101}} & \ge \frac {10201}{101} = \boxed{102.01} \end{aligned}

Really amazing solution!.

A Former Brilliant Member - 2 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...