Numerically Geometric

Geometry Level 3

In Δ A B C \Delta ABC , A P B C AP \perp BC and C Q A B CQ \perp AB . A P AP and C Q CQ intersect at point X X . Given that A X : X P = 1 : 1 |AX|:|XP|=1:1 and A Q : Q B = 1 : 3 |AQ|:|QB|=1:3 . If the area of quadrilateral B Q X P BQXP is 14 u n i t s 2 units^{2} , find the area of Δ A B C \Delta ABC in u n i t s 2 units^{2} .

This is part of the set Fun With Problem-Solving .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Donglin Loo
Jan 29, 2018

A X : X P = 1 : 1 |AX|:|XP|=1:1

A X : A P = 1 : 2 |AX|:|AP|=1:2

Let A X = y |AX|=y

Then, A P = 2 y |AP|=2y

A Q : Q B = 1 : 3 |AQ|:|QB|=1:3

A Q : A B = 1 : 4 |AQ|:|AB|=1:4

Let A Q = x |AQ|=x

Then, A B = 4 x |AB|=4x

Δ A Q X Δ A P B \Delta AQX \sim \Delta APB

A Q A P = A X A B \cfrac{|AQ|}{|AP|}=\cfrac{|AX|}{|AB|}

x 2 y = y 4 x \cfrac{x}{2y}=\cfrac{y}{4x}

2 y 2 = 4 x 2 2y^{2}=4x^{2}

y 2 = 2 x 2 y^{2}=2x^{2}


In Δ A Q X \Delta AQX ,

Q X 2 = y 2 x 2 |QX|^{2}=y^{2}-x^{2}

Q X 2 = 2 x 2 x 2 |QX|^{2}=2x^{2}-x^{2}

Q X 2 = x 2 |QX|^{2}=x^{2}

Q X = x |QX|=x

A X = 2 x |AX|=\sqrt{2}x

X P = 2 x |XP|=\sqrt{2}x

A P = 2 2 x |AP|=2\sqrt{2}x

A r e a o f Δ A Q X A r e a o f Δ A P B = ( A Q A P ) 2 = ( 1 2 2 ) 2 = 1 8 \cfrac{Area of \Delta AQX}{Area of \Delta APB}=(\cfrac{|AQ|}{|AP|})^{2}=(\cfrac{1}{2\sqrt2})^{2}=\cfrac{1}{8}

A r e a o f Δ A Q X A r e a o f q u a d r i l a t e r a l B Q X P = 1 7 \cfrac{Area of \Delta AQX}{Area of quadrilateral BQXP}=\cfrac{1}{7}

A r e a o f q u a d r i l a t e r a l B Q X P A r e a o f Δ A P B = 7 8 \cfrac{Area of quadrilateral BQXP}{Area of \Delta APB}=\cfrac{7}{8}


Δ A Q X Δ X P C \Delta AQX \sim \Delta XPC

A r e a o f Δ A Q X A r e a o f Δ X P C = ( A Q X P ) 2 = ( 1 2 ) 2 = 1 2 \cfrac{Area of \Delta AQX}{Area of \Delta XPC}=(\cfrac{|AQ|}{|XP|})^{2}=(\cfrac{1}{\sqrt2})^{2}=\cfrac{1}{2}

A r e a o f Δ X P C A r e a o f Δ A X C = X P A X = 1 1 \cfrac{Area of \Delta XPC}{Area of \Delta AXC}=\cfrac{|XP|}{|AX|}=\cfrac{1}{1}

A r e a o f Δ X P C A r e a o f Δ A P C = 1 2 \cfrac{Area of \Delta XPC}{Area of \Delta APC}=\cfrac{1}{2}

A r e a o f Δ A Q X A r e a o f Δ A P C = 1 2 × 1 2 = 1 4 \cfrac{Area of \Delta AQX}{Area of \Delta APC}=\cfrac{1}{2}\times\cfrac{1}{2}=\cfrac{1}{4}

A r e a o f Δ A P B A r e a o f Δ A P C = 8 4 \cfrac{Area of \Delta APB}{Area of \Delta APC}=\cfrac{8}{4}

A r e a o f q u a d r i l a t e r a l B Q X P A r e a o f Δ A B C = 7 8 + 4 = 7 12 \cfrac{Area of quadrilateral BQXP}{Area of \Delta ABC}=\cfrac{7}{8+4}=\cfrac{7}{12}

Area of Δ A B C = 14 × 12 7 = 24 ( u n i t s 2 ) \Delta ABC=14\times \cfrac{12}{7}=24(units^{2})

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...