O! These rads are fun

Algebra Level 3

5 + 2 13 3 + 5 2 13 3 = ? \Large{\sqrt [3]{5\color{#20A900}{+}2\sqrt {13}}\color{#20A900}{+}\sqrt [3]{5\color{#D61F06}{-}2\sqrt {13}}=\ ?}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Ikkyu San
Sep 25, 2015

Let A = 5 + 2 13 3 \color{#D61F06}{A=\sqrt[3]{5+2\sqrt{13}}} , B = 5 2 13 3 \color{#3D99F6}{B=\sqrt[3]{5-2\sqrt{13}}} and S = A + B = 5 + 2 13 3 + 5 2 13 3 \color{#20A900}S=\color{#D61F06}A+\color{#3D99F6}B=\color{#D61F06}{\sqrt[3]{5+2\sqrt{13}}}+\color{#3D99F6}{\sqrt[3]{5-2\sqrt{13}}}

Now,

S 3 = ( A + B ) 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 = A 3 + B 3 + 3 A B ( A + B ) = A 3 + B 3 + 3 A B S ( ) \begin{aligned}\color{#20A900}S^3=&\ (A+B)^3\\=&\ A^3+3A^2B+3AB^2+B^3\\=&\ A^3+B^3+3AB(\color{#D61F06}A+\color{#3D99F6}B)\\=&\ \color{#302B94}{A^3+B^3}+\color{magenta}{3AB}\color{#20A900}S\Rightarrow(*)\end{aligned}

Thus,

A 3 + B 3 = ( 5 + 2 13 3 ) 3 + ( 5 2 13 3 ) 3 = 5 + 2 13 + 5 2 13 = 10 \begin{aligned}\color{#302B94}{A^3+B^3}=&\ \left(\color{#D61F06}{\sqrt[3]{5+2\sqrt{13}}}\right)^3+\left(\color{#3D99F6}{\sqrt[3]{5-2\sqrt{13}}}\right)^3\\=&\ 5+2\sqrt{13}+5-2\sqrt{13}\\=&\ \color{#302B94}{10}\end{aligned}

3 A B = 3 ( 5 + 2 13 3 ) ( 5 2 13 3 ) = 3 ( 5 + 2 13 ) ( 5 2 13 ) 3 = 3 25 52 3 = 3 27 3 = 3 ( 3 ) = 9 \begin{aligned}\color{magenta}{3AB}=&\ 3\left(\color{#D61F06}{\sqrt[3]{5+2\sqrt{13}}}\right)\left(\color{#3D99F6}{\sqrt[3]{5-2\sqrt{13}}}\right)\\=&\ 3\sqrt[3]{(5+2\sqrt{13})(5-2\sqrt{13})}\\=&\ 3\sqrt[3]{25-52}\\=&\ 3\sqrt[3]{-27}\\=&\ 3(-3)\\=&\ \color{magenta}{-9}\end{aligned}

Instead A 3 + B 3 \color{#302B94}{A^3+B^3} with 10 \color{#302B94}{10} and 3 A B \color{magenta}{3AB} with 9 \color{magenta}{-9} in equation ( ) (*)

S 3 = 10 + ( 9 ) S S 3 + 9 S 10 = 0 ( S 1 ) ( S 2 + S + 10 ) = 0 S = 1 \begin{aligned}\color{#20A900}S^3=&\ \color{#302B94}{10}+(\color{magenta}{-9})\color{#20A900}S\\\color{#20A900}S^3+9\color{#20A900}S-10=&\ 0\\(\color{#20A900}S-1)(\color{#20A900}S^2+\color{#20A900}S+10)=&\ 0\\\color{#20A900}{S=}&\ \color{#20A900}1\end{aligned}

From equation

S 2 + S + 10 = 0 Δ = 1 2 4 ( 1 ) ( 10 ) = 39 \begin{aligned}\color{#20A900}S^2+\color{#20A900}S+10=&\ 0\\\Delta=&\ 1^2-4(1)(10)=-39\end{aligned}

Δ < 0 \Delta<0 . Thus, this equation has no real solution.

Hence, 5 + 2 13 3 + 5 2 13 3 = 1 \sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}=\boxed1

Same way - very nicely set out by the way

Lawrence Mayne - 5 years, 8 months ago

L e t A = 5 + 2 13 3 B = 5 2 13 3 T h e n x = 5 + 2 13 3 + 5 2 13 3 = A + B ( 1 ) Let\;A=\sqrt[3]{5+2\sqrt{13}}\\ B=\sqrt[3]{5-2\sqrt{13}}\\ Then \; x=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}=A+B\rightarrow (1) Multiply both sides of equation ( 1 ) (1) by ( A 2 A B + B 2 ) = ( ( A + B ) 2 3 A B ) (A^2-AB+B^2)=((A+B)^2-3AB) to get x × ( ( A + B ) 2 3 A B ) = A 3 + B 3 x\times ((A+B)^2-3AB)=A^3+B^3 .Now: A B = 5 + 2 13 3 × 5 2 13 3 = 25 52 3 = 27 3 = 3 A 3 + B 3 = 5 + 2 13 + 5 2 13 = 10 x × ( ( A + B ) 2 3 A B ) = A 3 + B 3 = x × ( x 2 + 9 ) = 10 ( 2 ) AB=\sqrt[3]{5+2\sqrt{13}}\times\sqrt[3]{5-2\sqrt{13}}=\sqrt[3]{25-52}=\sqrt[3]{-27}=-3\\ A^3+B^3=5+2\sqrt{13}+5-2\sqrt{13}=10\\ \implies x\times ((A+B)^2-3AB)=A^3+B^3=x \times (x^2+9)=10\rightarrow (2) By inspection, x = 1 x=1 satisfies (2).Dividing x 3 + 9 x 10 x^3+9x-10 by x 1 x-1 gives x 2 + x + 10 Δ = 1 2 4 ( 1 ) ( 10 ) = 39 < 0 x^2+x+10\Rightarrow \Delta=1^2-4(1)(10)=-39< 0 .As x R x\in \mathbb{R} so 5 + 2 13 3 + 5 2 13 3 = 1 \sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}=\boxed{1}

Moderator note:

Good approach for finding such cubics.

Rohit Udaiwal
Sep 25, 2015

Let 5 + 2 13 3 + 5 2 13 3 \sqrt [3]{5+2\sqrt {13}}+\sqrt [3]{5-2\sqrt{13}} be x x .Now cube both sides to get: 5 + 2 13 + 5 2 13 + 3 ( 5 + 2 13 ) ( 5 2 13 ) 3 × ( 5 + 2 13 3 + 5 2 13 3 ) = x 3 10 + 3 x 27 3 = x 3 5+2\sqrt {13}+5-2\sqrt {13}+3\sqrt [3]{(5+2\sqrt {13})(5-2\sqrt {13})}×(\sqrt [3]{5+2\sqrt {13}}+\sqrt[3]{5-2\sqrt {13}})=x^{3} \\ \Rightarrow{10+3x\sqrt [3]{-27}=x^{3 }} ( because 5 + 2 13 3 + 5 2 13 3 = x \sqrt [3]{5+2\sqrt {13}}+\sqrt [3]{5-2\sqrt{13}}=x .) 10 9 x = x 3 x 3 + 9 x 10 = 0 \Rightarrow{10-9x=x^{3}} \Rightarrow{x^{3}+9x-10=0} Now trying with x = 1 x=1 satisfies the above equation above. Note that as it is a cubic equation,there are 2 more solutions of x x .Let's obtain 'em as well. So ( x 1 ) ( x 2 + x + 10 = 0 ) x 2 + x + 10 = 0 (x-1)(x^{2}+x+10=0)\Rightarrow{x^{2}+x+10=0} clearly Δ < 0 \Delta<0 ,so the equation has no real solutions for x x . So the value of 5 + 2 13 3 + 5 2 13 3 \sqrt [3]{5+2\sqrt {13}}+\sqrt [3]{5-2\sqrt{13}} is 1 \boxed{1} . ¨ \ddot\smile

Exactly Same Way

Kushagra Sahni - 5 years, 8 months ago
James Wilson
Nov 7, 2017

After solving, and seeing my solution was the same as most, I decided to come up with a different solution, so I could share something different. Perhaps someone could try to properly justify the reasoning of this approach using the theory of fields, because I honestly don't know the proper justification (although it is correct). Anyway... Let 5 + 2 13 3 = a + b 13 \sqrt[3]{5+2\sqrt{13}}=a+b\sqrt{13} and 5 2 13 3 = a b 13 \sqrt[3]{5-2\sqrt{13}}=a-b\sqrt{13} . Multiplying the two equations results in 3 = a 2 13 b 2 -3=a^2-13b^2 . Then take the equation 5 + 2 13 3 = a + b 13 \sqrt[3]{5+2\sqrt{13}}=a+b\sqrt{13} and cube both sides: 5 + 2 13 = a 3 + 3 a 2 b 13 + 39 a b 2 + 13 13 b 3 5+2\sqrt{13}=a^3+3a^2b\sqrt{13}+39ab^2+13\sqrt{13}b^3 . Equating the terms that do not contain 13 \sqrt{13} , I get 5 = a 3 + 39 a b 2 5=a^3+39ab^2 . If I take the equation 3 = a 2 13 b 2 -3=a^2-13b^2 , multiply it by 3 a 3a , and then add it to 5 = a 3 + 39 a b 2 5=a^3+39ab^2 , I get 4 a 3 + 9 a 5 = 0 4a^3+9a-5=0 . Using the rational zeros theorem to test for roots, one can determine a = 1 2 a=\frac{1}{2} , with the other two roots being imaginary. Since the sum is equal to 2 a 2a (the b 13 b\sqrt{13} and b 13 -b\sqrt{13} cancel), the answer is 2 a = 2 ( 1 2 ) = 1 2a=2(\frac{1}{2})=1 . (And in case anyone was wondering, even though the polynomial I got looks different than the ones in the other solutions, if I let x = 2 a x=2a , and replace a a with x 2 \frac{x}{2} , then the polynomial will be the same as in the other solutions.)

Roberto Mardero
Dec 8, 2015

5^1/3 + 2 . 13^1/2 + 3^1/2 . 13^1/2 = 1.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...