Oblique Cylinder 2

Calculus Level 4

In the oblique cylinder above m Q P T = θ m\angle{QPT} = \theta , T P Q U TPQU is a parallelogram and P R T \triangle{PRT} is a right triangle. Let the volume and the lateral surface area of the oblique cylinder be V = b 2 V = b^2 and A = b A = b respectively, where b < 3 5 b < \frac 35 is a positive real number.

  1. Find the value of the radius r r that minimizes the distance y y .
  2. Find the distance d d and find θ \theta (in degrees).

If d 2 = b 2 π ( 6 π b + 3 2 ) d^2 = \dfrac{b}{2\pi} \left(6\pi b + 3\sqrt{2}\right) , find the value of b ( 0 , 3 5 ) b \in \left(0,\frac{3}{5}\right) to six decimal places.


The answer is 0.014067.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 11, 2018

V = π r 2 H = b 2 H = b 2 π r 2 V = \pi r^2 H = b^2 \implies H = \dfrac{b^2}{\pi r^2} and A = 2 π r s = b s = b 2 π r A = 2\pi rs = b \implies s = \dfrac{b}{2\pi r}

Y ( r ) = y 2 ( r ) = s 2 ( r ) H 2 ( r ) = b 2 π 2 ( 1 4 r 2 b 2 r 4 ) d Y d r = b 2 π 2 ( 8 b 2 r 2 2 r 5 ) \implies Y(r) = y^2(r) = s^2(r) - H^2(r) = \dfrac{b^2}{\pi^2}(\dfrac{1}{4 r^2 } - \dfrac{b^2}{r^4}) \implies \dfrac{dY}{dr} = \dfrac{b^2}{\pi^2}(\dfrac{8 b^2 - r^2}{2r^5}) r > 0 r = 2 2 b \:\ r > 0 \implies \boxed{r = 2\sqrt{2} b} \implies s = 1 4 2 π s = \dfrac{1}{4\sqrt{2}\pi} and H = 1 8 π H = \dfrac{1}{8\pi} and y = s 2 H 2 = 1 8 π = H y = \sqrt{s^2 - H^2} = \dfrac{1}{8\pi} = H .

For 0 < b < 3 5 d 2 Y d r 2 r = 2 2 b = 1 128 π 2 ( 3 5 b ) > 0 0 < b < \dfrac{3}{5} \implies \dfrac{d^2Y}{dr^2}|_{r = 2\sqrt{2} b} = \dfrac{1}{128\pi^2}(3 - 5b) > 0 \implies min at r = 2 2 b r = 2\sqrt{2} b .

Let m P T R = λ cos ( λ ) = y ( r ) s ( r ) = 1 2 m\angle{PTR} = \lambda \implies \cos(\lambda) = \dfrac{y(r)}{s(r)} = \dfrac{1}{\sqrt{2}} and θ = 180 λ cos ( θ ) = cos ( 180 θ ) = cos ( λ ) = 1 2 θ = 13 5 \theta = 180 - \lambda \implies \cos(\theta) = \cos(180 - \theta) = -\cos(\lambda) = -\dfrac{1}{\sqrt{2}} \implies \boxed{\theta = 135^\circ}

d 2 = s 2 + 4 r 2 + 4 r s cos ( λ ) = 1 32 π 2 + 32 b 2 + 2 b π = \implies d^2 = s^2 + 4r^2 + 4rs \cos(\lambda) = \dfrac{1}{32\pi^2} + 32 b^2 + \dfrac{\sqrt{2} b}{\pi} = 3 2 2 π 2 b 2 + 32 2 π b + 1 32 π 2 d = 3 2 2 π 2 b 2 + 32 2 π b + 1 4 2 π \dfrac{32^2\pi^2 b^2 + 32\sqrt{2}\pi b + 1}{32\pi^2} \implies \boxed{d = \dfrac{\sqrt{32^2\pi^2 b^2 + 32\sqrt{2}\pi b + 1}}{4\sqrt{2}\pi}}

d 2 = 3 2 2 π 2 b 2 + 32 2 π b + 1 32 π 2 = b 2 π ( 6 π b + 3 2 ) d^2 = \dfrac{32^2\pi^2 b^2 + 32\sqrt{2}\pi b + 1}{32\pi^2} = \dfrac{b}{2\pi} (6\pi b + 3\sqrt{2}) \implies 3 2 2 π 2 b 2 + 32 2 π b + 1 = 32 π 2 b ( 64 π b + 3 2 2 π ) = 32^2\pi^2 b^2 + 32\sqrt{2}\pi b + 1 = 32\pi^2 b(\dfrac{64\pi b + 3\sqrt{2}}{2\pi}) = 32 π 2 ( 32 b 2 + 3 2 π 2 b ) = 3 2 2 π 2 b 2 + 48 2 π b 32\pi^2(32 b^2 + \dfrac{3}{2\pi}\sqrt{2} b) = 32^2\pi^2b^2 + 48\sqrt{2}\pi b \implies 16 2 π b = 1 b = 1 16 2 π 0.014067 . 16\sqrt{2}\pi b = 1 \implies b = \dfrac{1}{16\sqrt{2}\pi} \approx \boxed{0.014067}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...