Oblique Prisms

Geometry Level pending

Let the above Oblique Octagonal Prism be an analogy of a 4 n 4n -gonal Oblique Prism.

In the above Oblique Octagonal Prism m Q P T = θ m\angle{QPT} = \theta and U V W \triangle{UVW} is a right triangle.

Extending to a 4 n 4n -gonal Oblique Prism let the volume and the lateral surface area of the Oblique 4 n 4n -gonal Prism be V = 1 V = 1 and A = 1 A = 1 respectively.

(1): Find the side x n x_{n} of the 4 n 4n -gon which maximizes the distance y n y_{n} .

(2): Show θ \theta is independent of n n and find the distance d n d_{n} and find θ \theta (in degrees).

(3): Find d = lim n d n d = \lim_{n \rightarrow \infty} d_{n} .

(4): Check your results in (2) and (3) using a oblique cylinder.

Express the answer as d + θ + d 1 \lfloor{d + \theta + d_{1}}\rfloor .

Note: In the above diagram d = d 2 , x = x 2 , d = d_{2}, x = x_{2}, and y = y 2 . y = y_{2}.

:


The answer is 148.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 10, 2018

x 2 = r sin ( π 4 n ) r = x 2 sin ( π 4 n ) h = x 2 cot ( π 4 n ) \dfrac{x}{2} = r \sin(\dfrac{\pi}{4n}) \implies r = \dfrac{x}{2 \sin(\dfrac{\pi}{4n})} \implies h^* = \dfrac{x}{2} \cot(\dfrac{\pi}{4n}) \implies the area of the 4 n 4n -gon A = n x 2 cot ( π 4 n ) A = nx^2\cot(\dfrac{\pi}{4n}) .

The volume V = n x 2 cot ( π 4 n ) H = 1 H = tan ( π 4 n ) n x 2 V = nx^2\cot(\dfrac{\pi}{4n}) H = 1 \implies H = \dfrac{\tan(\dfrac{\pi}{4n})}{nx^2}

The lateral surface area S = 4 n x s = 1 s = 1 4 n x Y ( r ) = y 2 ( r ) = s 2 H 2 = 1 n 2 ( 1 16 x 2 tan 2 ( π 4 n ) x 4 ) S = 4nxs = 1 \implies s = \dfrac{1}{4nx} \implies Y(r) = y^2(r) = s^2 - H^2 = \dfrac{1}{n^2}(\dfrac{1}{16 x^2} - \dfrac{\tan^2(\dfrac{\pi}{4n})}{x^4}) \implies

d Y d r = 32 tan 2 ( π 4 n ) x 2 8 n 2 x 5 = 0 \dfrac{dY}{dr} = \dfrac{32\tan^2(\dfrac{\pi}{4n}) - x^2}{8 n^2 x^5} = 0 \implies x = 4 2 tan ( π 4 n ) r = 2 2 sec ( π 4 n ) , x = 4\sqrt{2}\tan(\dfrac{\pi}{4n}) \implies r = 2\sqrt{2}\sec(\dfrac{\pi}{4n}), s = cot ( π 4 n ) 16 2 n s = \dfrac{\cot(\dfrac{\pi}{4n})}{16\sqrt{2} n} , H = cot ( π 4 n ) 32 n H = \dfrac{\cot(\dfrac{\pi}{4n})}{32 n} and y = s 2 H 2 = cot ( π 4 n ) 32 n = H y = \sqrt{s^2 - H^2} = \dfrac{\cot(\dfrac{\pi}{4n})}{32 n} = H .

Note: d 2 Y d x 2 x = 4 2 tan ( π 4 n ) = \dfrac{d^2Y}{dx^2}|_{x = 4\sqrt{2}\tan(\dfrac{\pi}{4n})} = ( 1 8 n 2 ( 4 2 tan ( π 4 n ) ) 4 ) ( 3 5 cot ( π 4 n ) ) < 0 , (\dfrac{1}{8n^2(4\sqrt{2}\tan(\dfrac{\pi}{4n}))^4})(3 - 5\cot(\dfrac{\pi}{4n})) < 0, since cot ( π 4 n ) 1 \cot(\dfrac{\pi}{4n}) \geq 1 and is increasing for increasing n n \implies we have a max at x = 4 2 tan ( π 4 n ) x =4\sqrt{2}\tan(\dfrac{\pi}{4n})

Let m U W V = λ cos ( λ ) = y s = 1 2 m\angle{UWV} = \lambda \implies \cos(\lambda) = \dfrac{y}{s} = \dfrac{1}{\sqrt{2}} and θ = 180 λ cos ( θ ) = cos ( 180 λ ) = cos ( λ ) = 1 2 θ = 13 5 \theta = 180 - \lambda \implies \cos(\theta) = \cos(180 - \lambda) = -\cos(\lambda) = \dfrac{-1}{\sqrt{2}} \implies \boxed{\theta = 135^{\circ}}

r = 2 2 sec ( π 4 n ) r = 2\sqrt{2}\sec(\dfrac{\pi}{4n}) and s = cot ( π 4 n ) 16 2 n s = \dfrac{\cot(\dfrac{\pi}{4n})}{16\sqrt{2} n} \implies

d 2 ( n ) = s 2 + 4 r 2 + 4 r s cos ( λ ) = cos 2 ( π 4 n ) 2 9 ( n sin ( π 4 n ) ) 2 d^2(n) = s^2 + 4r^2 + 4rs\cos(\lambda) = \dfrac{\cos^2(\dfrac{\pi}{4n})}{2^9(n\sin(\dfrac{\pi}{4n}))^2} + 2 5 cos 2 ( π 4 n ) \dfrac{2^5}{\cos^2(\dfrac{\pi}{4n})} + 1 2 2 ( n sin ( π 4 n ) ) \dfrac{1}{2\sqrt{2}(n\sin(\dfrac{\pi}{4n}))} \implies

d n = cos 2 ( π 4 n ) 2 9 ( n sin ( π 4 n ) ) 2 + 2 5 cos 2 ( π 4 n ) + 1 2 2 ( n sin ( π 4 n ) ) d_{n} = \sqrt{\dfrac{\cos^2(\dfrac{\pi}{4n})}{2^9(n\sin(\dfrac{\pi}{4n}))^2} + \dfrac{2^5}{\cos^2(\dfrac{\pi}{4n})} + \dfrac{1}{2\sqrt{2}(n\sin(\dfrac{\pi}{4n}))}}

Using the inequality cos ( x ) < sin ( x ) x < 1 π 4 cos ( π 4 n ) < n sin ( π 4 n ) < π 4 \cos(x) < \dfrac{\sin(x)}{x} < 1 \implies \dfrac{\pi}{4}\cos(\dfrac{\pi}{4n}) < n\sin(\dfrac{\pi}{4n}) < \dfrac{\pi}{4} \implies

lim n d n = 1 32 π 2 + 32 + 2 π = \lim_{n \rightarrow \infty} d_{n} = \sqrt{\dfrac{1}{32\pi^2} + 32 + \dfrac{\sqrt{2}}{\pi}} = 3 2 2 π 2 + 32 2 π + 1 4 2 π 5.69678 \dfrac{\sqrt{32^2\pi^2 + 32\sqrt{2}\pi + 1}}{4\sqrt{2}\pi} \approx \boxed{5.69678}

For n = 1 n = 1 d 1 = 1 16 2 15 + 2 8 + 1 2 8.03131 d_{1} = \dfrac{1}{16}\sqrt{\dfrac{2^{15} + 2^8 + 1}{2}} \approx \boxed{8.03131}

d + θ + d 1 = 148 \therefore \lfloor{d + \theta + d_{1}}\rfloor = \boxed{148} .

Checking using oblique cylinder:

In the above Oblique Cylinder m Q P T = θ m\angle{QPT} = \theta , T P Q U TPQU is a parallelogram and P R T \triangle{PRT} is a right triangle.

V = π r 2 H = 1 H = 1 π r 2 V = \pi r^2 H = 1 \implies H = \dfrac{1}{\pi r^2} and A = 2 π r s = 1 s = 1 2 π r A = 2\pi rs = 1 \implies s = \dfrac{1}{2\pi r}

Y ( r ) = y 2 ( r ) = s 2 ( r ) H 2 ( r ) = 1 4 π 2 r 2 1 π 2 r 4 d Y d r = 1 π 2 ( 8 r 2 2 r 5 ) \implies Y(r) = y^2(r) = s^2(r) - H^2(r) = \dfrac{1}{4\pi^2 r^2 } - \dfrac{1}{\pi^2 r^4} \implies \dfrac{dY}{dr} = \dfrac{1}{\pi^2}(\dfrac{8 - r^2}{2r^5}) r > = 0 r = 2 2 r > = 0 \implies r = 2\sqrt{2} \implies s = 1 4 2 π s = \dfrac{1}{4\sqrt{2}\pi} and H = 1 8 π H = \dfrac{1}{8\pi} and y = s 2 H 2 = 1 8 π = H y = \sqrt{s^2 - H^2} = \dfrac{1}{8\pi} = H .

d 2 Y d r 2 r = 2 2 = 1 ( 8 π ) 2 < 0 \dfrac{d^2Y}{dr^2}|_{r = 2\sqrt{2}} = \dfrac{-1}{(8\pi)^2} < 0 \implies max at r = 2 2 r = 2\sqrt{2} .

Let m P T R = λ cos ( λ ) = y ( r ) s ( r ) = 1 2 m\angle{PTR} = \lambda \implies \cos(\lambda) = \dfrac{y(r)}{s(r)} = \dfrac{1}{\sqrt{2}} and θ = 180 λ cos ( θ ) = c o s ( 180 θ ) = c o s ( λ ) = 1 2 θ = 13 5 \theta = 180 - \lambda \implies \cos(\theta) = cos(180 - \theta) = -cos(\lambda) = -\dfrac{1}{\sqrt{2}} \implies \boxed{\theta = 135^\circ}

d 2 = s 2 + 4 r 2 + 4 r s cos ( λ ) = 1 32 π 2 + 32 + 2 π = \implies d^2 = s^2 + 4r^2 + 4rs \cos(\lambda) = \dfrac{1}{32\pi^2} + 32 + \dfrac{\sqrt{2}}{\pi} = 3 2 2 π 2 + 32 2 π + 1 32 π 2 \dfrac{32^2\pi^2 + 32\sqrt{2}\pi + 1}{32\pi^2} \implies d = 3 2 2 π 2 + 32 2 π + 1 4 2 π 5.69678 d = \dfrac{\sqrt{32^2\pi^2 + 32\sqrt{2}\pi + 1}}{4\sqrt{2}\pi} \approx \boxed{5.69678}

Note: Using the above x = 4 2 tan ( π 4 n ) r = 2 2 sec ( π 4 n ) , x = 4\sqrt{2}\tan(\dfrac{\pi}{4n}) \implies r = 2\sqrt{2}\sec(\dfrac{\pi}{4n}), s = cot ( π 4 n ) 16 2 n s = \dfrac{\cot(\dfrac{\pi}{4n})}{16\sqrt{2} n} , and y = cot ( π 4 n ) 32 n = H y = \dfrac{\cot(\dfrac{\pi}{4n})}{32 n} = H we obtain:

r = lim n r n = 2 2 r = \lim_{n \rightarrow \infty} r_{n} = 2\sqrt{2} , y = lim n cos ( π 4 n ) 32 ( n sin ( π 4 n ) ) = 1 8 π = H y = \lim_{n \rightarrow \infty} \dfrac{\cos(\dfrac{\pi}{4n})}{32(n\sin(\dfrac{\pi}{4n}))} = \dfrac{1}{8\pi} = H , and s = lim n cos ( π 4 n ) 16 2 ( n sin ( π 4 n ) ) = 1 4 2 π s = \lim_{n \rightarrow \infty} \dfrac{\cos(\dfrac{\pi}{4n})}{16\sqrt{2}(n\sin(\dfrac{\pi}{4n}))} =\dfrac{1}{4\sqrt{2}\pi}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...