Oblique projection of an ellipse on the x y xy plane - Axes

Geometry Level pending

An ellipse in space is specified by

p ( t ) = ( 5 , 4 , 10 ) + ( 4 , 3 , 3 ) cos t + ( 3 , 5 , 9 ) sin t \mathbf{p}(t) = (5,4,10) + (4,3,-3) \cos t + (3,5,9) \sin t

is subject to parallel rays of light producing its shadow on the x y xy plane. The direction vector of the rays is d = ( 1 , 2 , 5 ) \mathbf{d} = (-1, -2, -5) . Find the sum of the semi-major and the semi-minor axes lengths of the shadow ellipse.


The answer is 6.7082.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Dec 1, 2020

The vector passing through a point on the edge of the ellipse is defined by the equation ( x , y , z ) = ( 1 , 2 , 5 ) u + p ( t ) (x, y, z) = (-1, -2, -5)u + \mathbf{p}(t) .

For the shadow on the x y xy -plane, z = 5 u + 10 3 cos t + 9 sin t = 0 z = -5u + 10 - 3 \cos t + 9 \sin t = 0 , which rearranges to u = 2 3 5 cos t + 9 5 sin t u = 2 - \frac{3}{5} \cos t + \frac{9}{5} \sin t .

Substituting u u back into the vector equation and simplifying gives ( x , y ) = ( 3 + 23 5 cos t + 6 5 sin t , 21 5 cos t + 7 5 sin t ) (x, y) = (3 + \frac{23}{5} \cos t + \frac{6}{5} \sin t, \frac{21}{5} \cos t + \frac{7}{5} \sin t) , an ellipse on the x y xy -plane that has a center at ( 3 , 0 ) (3, 0) .

The square of the distance between a point on the edge of the ellipse and its center is d 2 = ( 3 + 23 5 cos t + 6 5 sin t 3 ) 2 + ( 21 5 cos t + 7 5 sin t ) ) 2 d^2 = (3 + \frac{23}{5} \cos t + \frac{6}{5} \sin t - 3)^2 + (\frac{21}{5} \cos t + \frac{7}{5} \sin t))^2 which rearranges and simplifies to d 2 = 57 5 sin 2 t + 177 10 cos 2 t + 211 10 d^2 = \frac{57}{5} \sin 2t + \frac{177}{10} \cos 2t + \frac{211}{10} .

By implicit differentiation, 2 d d d d t = 114 5 cos 2 t 177 5 sin 2 t 2d \frac{dd}{dt} = \frac{114}{5} \cos 2t - \frac{177}{5} \sin 2t . The semi-major and semi-minor axes will be when d d d t = 0 \frac{dd}{dt} = 0 , which after substituting solves to t = 1 2 n π + 1 2 tan 1 38 59 t = \frac{1}{2}n \pi + \frac{1}{2} \tan^{-1} \frac{38}{59} for any integer n n .

Substituting t t back into d 2 d^2 gives two values for d d , which correspond to the semi-major and semi-minor axes, a = 211 10 + 3 197 2 a = \sqrt{\frac{211}{10} + \frac{3\sqrt{197}}{2}} and b = 211 10 3 197 2 b = \sqrt{\frac{211}{10} - \frac{3\sqrt{197}}{2}} .

The sum of the semi-major and semi-minor axes is therefore a + b = 211 10 + 3 197 2 + 211 10 3 197 2 6.7082 a + b = \sqrt{\frac{211}{10} + \frac{3\sqrt{197}}{2}} + \sqrt{\frac{211}{10} - \frac{3\sqrt{197}}{2}} \approx \boxed{6.7082} .

Hosam Hajjir
Dec 1, 2020

Let v 0 = [ 5 4 10 ] v 1 = [ 4 3 3 ] v 2 = [ 3 5 9 ] \mathbf{v_0} = \begin{bmatrix} 5 \\ 4 \\ 10 \end{bmatrix} \hspace{24pt} \mathbf{v_1} = \begin{bmatrix} 4 \\ 3 \\ -3 \end{bmatrix} \hspace{24pt} \mathbf{v_2} = \begin{bmatrix} 3 \\ 5 \\ 9 \end{bmatrix}

Then, our ellipse is p ( t ) = v 0 + v 1 cos t + v 2 sin t ( 1 ) \mathbf{p}(t) = \mathbf{v_0} + \mathbf{v_1} \cos t + \mathbf{v_2} \sin t \hspace{12pt} (1)

Define the matrix V = [ v 1 , v 2 ] \mathbf{V} = [\mathbf{v_1} , \mathbf{v_2} ] and the vector u ( t ) = [ cos t sin t ] \mathbf{u}(t) = \begin{bmatrix} \cos t \\ \sin t \end{bmatrix}

Then the equation of the ellipse is p ( t ) = v 0 + V u ( t ) ( 2 ) \mathbf{p}(t) = \mathbf{v_0} + \mathbf{V u }(t) \hspace{12pt}(2)

The parallel light rays along vector d \mathbf{d} together with the given ellipse generate an elliptical cylinder whose equation we want to find.

A point q \mathbf{q} on the surface of this cylinder is given by

q ( t , s ) = p ( t ) + s d = v 0 + V u ( t ) + s d ( 3 ) \mathbf{q}(t, s) = \mathbf{p}(t) + s \mathbf{d} = \mathbf{v_0} + \mathbf{V u}(t) + s \mathbf{d} \hspace{12pt} (3)

Define the projection matrix M = I d d T \mathbf{M} = \mathbf{I} - \mathbf{d d}^T , where d \mathbf{d} is assumed to have been normalized. Now pre-multiply both sides of equation ( 3 ) (3) by matrix M \mathbf{M} , you get,

M ( q v 0 ) = M V u ( 4 ) \mathbf{ M (q - v_0) }= \mathbf{ M V u } \hspace{12pt}(4)

We want to solve for the vector u \mathbf{u} , so we'll multiply both sides by ( M V ) T \mathbf{(MV)}^T ,

V T M T M ( q v 0 ) = V T M T M V u ( 5 ) \mathbf{ V}^T \mathbf{M}^T \mathbf{M (q - v_0 )} = \mathbf{V}^T \mathbf{M}^T \mathbf{M V u } \hspace{12pt}(5)

Noting that M T = M \mathbf{M}^T = \mathbf{M} and M 2 = M \mathbf{M}^2 = \mathbf{M} , this becomes,

V T M ( q v 0 ) = V T M V u ( 6 ) \mathbf{ V}^T \mathbf{M (q - v_0 )} = \mathbf{V}^T \mathbf{M V u } \hspace{12pt}(6)

Pre-multiplying by the inverse of the 2 × 2 2 \times 2 matrix V T M V \mathbf{V}^T \mathbf{M V} , we get vector u \mathbf{u} explicitly.

u = ( V T M V ) 1 V T M ( q v 0 ) = Q 1 ( q v 0 ) ( 7 ) \mathbf{u} = ( \mathbf{V}^T \mathbf{M V})^{-1} \mathbf{ V}^T \mathbf{M (q - v_0 ) } = \mathbf{Q_1 (q - v0) } \hspace{12pt}(7)

Now since u T u = 1 \mathbf{u}^T \mathbf{u} = 1 , then the equation of the cylinder is given by

( q v 0 ) T Q ( q v 0 ) = 1 ( 8 ) \mathbf{(q - v_0)}^T \mathbf{Q (q - v_0) } = 1 \hspace{12pt}(8)

where Q = Q 1 T Q 1 \mathbf{Q} = \mathbf{Q_1}^T \mathbf{Q_1} .

Now that we have the equation of the cylinder, we can intersect it with any plane. If the plane is specified using the vector equation,

r = r 0 + U c ( 9 ) \mathbf{r} = \mathbf{r_0 + U c} \hspace{12pt}(9)

where U U is a 3 × 2 3 \times 2 matrix whose columns are unit orthogonal vectors that together with r 0 \mathbf{r_0} , span the plane under consideration. Vector c = [ c 1 , c 2 ] T \mathbf{c} = [ c_1, c_2]^T is the coordinate vector of any point on the plane.

Substituting the expression for r \mathbf{r} into the equation of the cylinder, yields,

( r 0 v 0 + U c ) T Q ( r 0 v 0 + U c ) = 1 ( 10 ) \mathbf{(r_0 - v_0+ U c )}^T \mathbf{Q (r_0- v_0 + U c) } = 1 \hspace{12pt}(10)

Let w 0 = r 0 v 0 \mathbf{w_0 = r_0 - v_0 } , then expanding equation ( 10 ) (10) , we get,

c T U T Q U c + 2 c T U T Q w 0 + w 0 T Q w 0 = 1 ( 11 ) \mathbf{c^T U^T Q U c + 2 c^T U^T Q w_0 + w_0^T Q w_0 } = 1 \hspace{12pt} (11)

If we define the center point

w 1 = ( U T Q U ) 1 U T Q w 0 ( 12 ) \mathbf{w_1} = - \mathbf{(U^T Q U)}^{-1} \mathbf{ U^T Q w_0 } \hspace{12pt} (12)

then equation ( 11 ) (11) becomes,

( c w 1 ) T U T Q U ( c w 1 ) = 1 w 0 T Q w 0 + w 1 U T Q U w 1 ( 13 ) \mathbf{( c - w_1 )^T U^T Q U (c - w_1)} = \mathbf{1 - w_0^T Q w_0 + w_1 U^T Q U w_1 } \hspace{12pt} (13)

Dividing by the right hand side, we obtain the standard equation of an ellipse in the plane,

( c w 1 ) T F ( c w 1 ) = 1 ( 14 ) \mathbf{( c - w_1 )^T F (c - w_1)} = 1 \hspace{12pt} (14)

where F = U T Q U 1 w 0 T Q w 0 + w 1 U T Q U w 1 ( 15 ) \mathbf{F} = \dfrac{\mathbf{U^T Q U} }{\mathbf{1 - w_0^T Q w_0 + w_1 U^T Q U w_1 } } \hspace{12pt} (15)

Naturally, matrix F \mathbf{F} is positive definite, and its two positive eigenvalues are the reciprocal of the squares of the semi-major and semi-minor axes lengths of the shadow ellipse on the plane. Performing all of the above calculations using a suitable application (for example MATLAB) or Wolframalpha.com , one finds the semi-major axis a a and semi-minor axis b b are given by

a = 6.492572932 a = 6.492572932 and b = 0.215631001 b = 0.215631001

And thus the answer is a + b 6.7082 a + b \approx \boxed{ 6.7082 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...