Oblique Square Pyramids!

Geometry Level pending

A semicircle is inscribed in square base A B C D ABCD as shown above and B F BF is tangent to the semicircle at point E E .

Let the height of the oblique square pyramid E T = A B \overline{ET} = \overline{AB} and A s A_{s} be the lateral surface area.

If A s A A B C D = α + β + γ + λ ω \dfrac{A_{s}}{A_{\square{ABCD}}} = \dfrac{\sqrt{\alpha} + \sqrt{\beta} + \sqrt{\gamma} + \sqrt{\lambda}}{\omega} ,

where α , β , γ , λ \alpha, \beta, \gamma, \lambda and ω \omega are coprime positive integers, find α + β + γ + λ + ω \alpha + \beta + \gamma + \lambda + \omega .


The answer is 140.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Mar 12, 2020

To find point E ( x , y ) E(x,y) of square base A B C D ABCD :

Let a a be the length of a side of the square A B C D ABCD .

( x a 2 ) 2 + y 2 = a 2 2 ( 2 x a ) 2 4 + y 2 = a 2 4 (x - \dfrac{a}{2})^2 + y^2 = \dfrac{a^2}{2} \implies \dfrac{(2x - a)^2}{4} + y^2 = \dfrac{a^2}{4} \implies

x 2 a x + y 2 = 0 y = x ( a x ) x^2 - ax + y^2 = 0 \implies y = \sqrt{x(a - x)}

m B E = x ( a x ) a x m = m P E = m_{BE} = \dfrac{\sqrt{x(a - x)} - a}{x} \implies m_{\perp} = m_{PE} = 2 x ( a x ) 2 x a = \dfrac{2\sqrt{x(a - x)}}{2x - a} =

x x ( a x ) a -\dfrac{x}{\sqrt{x(a - x)} - a} \implies 2 a x 2 x 2 2 a x ( a x ) = a x 2 x 2 2ax - 2x^2 - 2a\sqrt{x(a - x)} = ax - 2x^2 \implies

x = 2 x ( a x ) x 2 = 4 a x 4 x 2 x ( 4 a 5 x ) = 0 x = 2\sqrt{x(a - x)} \implies x^2 = 4ax - 4x^2 \implies x(4a - 5x) = 0 and x 0 x \neq 0

x = 4 a 5 y = 2 a 5 \implies x = \dfrac{4a}{5} \implies y = \dfrac{2a}{5} E : ( 4 a 5 , 2 a 5 ) \implies E:(\dfrac{4a}{5}, \dfrac{2a}{5})

Using E : ( 4 a 5 , 2 a 5 ) E:(\dfrac{4a}{5}, \dfrac{2a}{5}) we obtain:

U E = 2 a 5 R E = 3 a 5 UE = \dfrac{2a}{5} \implies RE = \dfrac{3a}{5} and S E = 4 a 5 E Q = a 5 SE = \dfrac{4a}{5} \implies EQ = \dfrac{a}{5}

S 1 = 29 5 a , S 2 = 26 5 a , S 3 = 34 5 a \implies S_{1} = \dfrac{\sqrt{29}}{5}a, S_{2} = \dfrac{\sqrt{26}}{5}a, S_{3} = \dfrac{\sqrt{34}}{5}a and S 4 = 41 5 a S_{4} = \dfrac{\sqrt{41}}{5}a \implies

A s = a 2 ( 29 + 26 + 34 + 41 10 ) A_{s} = a^2(\dfrac{\sqrt{29} + \sqrt{26} + \sqrt{34} + \sqrt{41}}{10}) \implies

A s A A B C D = 29 + 26 + 34 + 41 10 = \dfrac{A_{s}}{A_{\square{ABCD}}} = \dfrac{\sqrt{29} + \sqrt{26} + \sqrt{34} + \sqrt{41}}{10} =

α + β + γ + λ ω α + β + γ + λ + ω = 140 \dfrac{\sqrt{\alpha} + \sqrt{\beta} + \sqrt{\gamma} + \sqrt{\lambda}}{\omega} \implies \alpha + \beta + \gamma + \lambda + \omega = \boxed{140} .

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...