In the above Oblique Triangular Prism , , the lateral faces are parallelograms and the bases are equilateral triangles as shown above, and is a right triangle.
Let the volume and the lateral surface area of the oblique cylinder be and respectively, where is a positive real number.
Find the the radius that minimizes the distance .
Find the distance and (in degrees).
(3) If , find the value of .
(4) Find in degrees.
Express the answer as: + .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
V = 4 3 r 2 H = b 2 ⟹ H = 3 r 2 4 b 2 A = 3 r s = b ⟹ s = 3 r b ⟹ Y ( r ) = y 2 ( r ) = 3 b 2 ( 3 r 2 1 − r 4 1 6 b 2 ) ⟹ d r d Y = 3 2 b 2 ( r 5 2 4 b 2 − 3 r 3 1 ) = 9 r 5 2 b 2 ( 7 2 b 2 − r 2 ) = 0 ⟹ r = 6 2 b for r > 0 ⟹ H = 1 8 3 1 and s = 1 8 2 1 ⟹ y = s 2 − H 2 = 1 8 6 1
Let λ = m ∠ D F E .
cos ( λ ) = s y = 3 1 and cos ( θ ) = cos ( 1 8 0 − λ ) = − cos ( λ ) = 3 − 1
cos ( θ ) = 3 − 1 ⟹ θ ≈ 1 2 5 . 2 6 4 3 8 9 6 8 ∘
( 0 < b < 5 3 ) ⟹ d r 2 d 2 Y ∣ r = 6 2 b = 3 2 b 2 ( 7 2 3 7 2 − 1 2 0 b 2 ) > 0 ⟹ r = 6 2 b minimizes y .
d 2 = 6 4 8 3 4 6 6 5 6 3 b 2 + 4 3 2 b + 3 ⟹ d = 1 8 2 4 6 6 5 6 3 b 2 + 4 3 2 b + 3
and d 2 = 3 3 b ( 2 1 6 3 b + 4 ) ⟹
4 6 6 5 6 3 b 2 + 4 3 2 b + 3 = 6 4 8 3 ( 3 3 ( 2 1 6 3 b + 4 ) b = 2 1 6 ( 2 1 6 3 b 2 + 4 b ) = 4 6 6 5 6 3 b 2 + 8 6 4 b ⟹ 4 3 2 b = 3 ⟹ b = 4 3 2 3
b = 4 3 2 3 ⟹ d 2 = 2 3 9 2 3 4 3 3 + 2 3 = 2 ( 3 6 2 ) 1 1 ⟹ d = 3 6 1 2 1 1 and r = 6 2 ( 4 3 2 3 ) = 7 2 6 ⟹ r 2 = 6 3 ∗ 2 2 1
r 2 = 2 d 2 − 2 d 2 cos ( α ) ⟹ cos ( α ) = 2 d 2 2 d 2 − r 2 = 2 ( 6 4 ∗ 2 1 1 ) 2 ( 2 ∗ 6 4 1 1 ) − 2 2 ∗ 6 3 1 = ( 2 2 ∗ 6 4 3 8 ) ( 1 1 6 4 ) = 4 4 3 8 = 2 2 1 9 ⟹ cos ( α ) = 2 2 1 9 ⟹ α ≈ 3 0 . 2 7 2 6 4 ∘
∴ ⌊ θ ⌋ + ⌊ α ⌋ = 1 5 5 .