Oblique Triangular Prism 2

Calculus Level 5

In the above Oblique Triangular Prism m A B C = θ m\angle{ABC} = \theta , m A C F = α m\angle{ACF} = \alpha , the lateral faces are parallelograms and the bases are equilateral triangles as shown above, and D E F \triangle{DEF} is a right triangle.

Let the volume and the lateral surface area of the oblique cylinder be V = b 2 V = b^2 and A = b A = b respectively, where b < 3 5 b < \sqrt{\dfrac{3}{5}} is a positive real number.

  1. Find the the radius r = r ( b ) r = r(b) that minimizes the distance y y .

  2. Find the distance d = d ( b ) d = d(b) and θ \theta (in degrees).

(3) If d 2 = b 3 3 ( 216 3 b + 4 ) d^2 = \dfrac{b}{3\sqrt{3}} (216\sqrt{3} b + 4) , find the value of b b .

(4) Find α \alpha in degrees.

Express the answer as: θ \lfloor{\theta}\rfloor + α \lfloor{\alpha}\rfloor .


The answer is 155.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 13, 2018

V = 3 4 r 2 H = b 2 H = 4 b 2 3 r 2 V = \dfrac{\sqrt{3}}{4} r^2 H = b^2 \implies H = \dfrac{4b^2}{\sqrt{3}r^2} A = 3 r s = b s = b 3 r Y ( r ) = y 2 ( r ) = b 2 3 ( 1 3 r 2 16 b 2 r 4 ) A = 3rs = b \implies s = \dfrac{b}{3r} \implies Y(r) = y^2(r) = \dfrac{b^2}{3}(\dfrac{1}{3 r^2} - \dfrac{16b^2}{r^4}) \implies d Y d r = 2 b 2 3 ( 24 b 2 r 5 1 3 r 3 ) = 2 b 2 9 r 5 ( 72 b 2 r 2 ) = 0 r = 6 2 b \dfrac{dY}{dr} = \dfrac{2b^2}{3}(\dfrac{24 b^2}{r^5} - \dfrac{1}{3r^3}) = \dfrac{2b^2}{9r^5}(72 b^2 - r^2) = 0 \implies r = 6\sqrt{2} b for r > 0 H = 1 18 3 r > 0 \implies H = \dfrac{1}{18\sqrt{3}} and s = 1 18 2 y = s 2 H 2 = 1 18 6 s = \dfrac{1}{18\sqrt{2}} \implies y = \sqrt{s^2 - H^2} = \dfrac{1}{18\sqrt{6}}

Let λ = m D F E \lambda = m\angle{DFE} .

cos ( λ ) = y s = 1 3 \cos(\lambda) = \dfrac{y}{s} = \dfrac{1}{\sqrt{3}} and cos ( θ ) = cos ( 180 λ ) = cos ( λ ) = 1 3 \cos(\theta) = \cos(180 - \lambda) = -\cos(\lambda) = \dfrac{-1}{\sqrt{3}}

cos ( θ ) = 1 3 θ 125.2643896 8 \boxed{\cos(\theta) = \dfrac{-1}{\sqrt{3}} \implies \theta \approx 125.26438968^\circ}

( 0 < b < 3 5 ) d 2 Y d r 2 r = 6 2 b = 2 b 2 3 ( 72 120 b 2 7 2 3 ) > 0 (0 < b < \sqrt{\dfrac{3}{5}}) \implies \dfrac{d^2Y}{dr^2}|_{r = 6\sqrt{2}b} = \dfrac{2b^2}{3}(\dfrac{72 - 120b^2}{72^3}) > 0 r = 6 2 b \implies \boxed{r = 6\sqrt{2}b} minimizes y y .

d 2 = 46656 3 b 2 + 432 b + 3 648 3 d = 46656 3 b 2 + 432 b + 3 18 2 d^2 = \dfrac{46656\sqrt{3}b^2 + 432b + \sqrt{3}}{648\sqrt{3}} \implies \boxed{d = \dfrac{\sqrt{46656\sqrt{3}b^2 + 432b + \sqrt{3}}}{18\sqrt{2}}}

and d 2 = b 3 3 ( 216 3 b + 4 ) \:\ d^2 = \dfrac{b}{3\sqrt{3}} (216\sqrt{3} b + 4) \implies

46656 3 b 2 + 432 b + 3 = 648 3 ( ( 216 3 b + 4 3 3 ) b = 46656\sqrt{3}b^2 + 432b + \sqrt{3} = 648\sqrt{3}(\dfrac{(216\sqrt{3}b + 4}{3\sqrt{3}})b = 216 ( 216 3 b 2 + 4 b ) = 46656 3 b 2 + 864 b 432 b = 3 b = 3 432 216(216\sqrt{3}b^2 + 4b) = 46656\sqrt{3}b^2 + 864b \implies 432b = \sqrt{3} \implies \boxed{b = \dfrac{\sqrt{3}}{432}}

b = 3 432 d 2 = 3 4 3 + 2 3 2 3 9 2 3 = 11 2 ( 3 6 2 ) b = \dfrac{\sqrt{3}}{432} \implies\boxed{d^2 = \dfrac{\dfrac{3}{4}\sqrt{3} + 2\sqrt{3}}{2^3 9^2\sqrt{3}} = \dfrac{11}{2(36^2)}} \implies d = 1 36 11 2 \boxed{d = \dfrac{1}{36}\sqrt{\dfrac{11}{2}}} and r = 6 2 ( 3 432 ) = 6 72 r 2 = 1 6 3 2 2 \boxed{r = 6\sqrt{2}(\dfrac{\sqrt{3}}{432}) = \dfrac{\sqrt{6}}{72} \implies r^2 = \dfrac{1}{6^3 * 2^2}}

r 2 = 2 d 2 2 d 2 cos ( α ) cos ( α ) = 2 d 2 r 2 2 d 2 = r^2 = 2d^2 - 2d^2\cos(\alpha) \implies \cos(\alpha) = \dfrac{2d^2 - r^2}{2d^2} = 2 ( 11 2 6 4 ) 1 2 2 6 3 2 ( 11 6 4 2 ) = \dfrac{2(\dfrac{11}{2 * 6^4}) - \dfrac{1}{2^2 * 6^3}}{2(\dfrac{11}{6^4 *2})} = ( 38 2 2 6 4 ) ( 6 4 11 ) = 38 44 = 19 22 (\dfrac{38}{2^2 * 6^4})(\dfrac{6^4}{11}) = \dfrac{38}{44} = \dfrac{19}{22} \implies cos ( α ) = 19 22 α 30.2726 4 \boxed{\cos(\alpha) = \dfrac{19}{22} \implies \alpha \approx 30.27264^\circ}

θ \therefore \lfloor{\theta}\rfloor + α = 155 \lfloor{\alpha}\rfloor = \boxed{155} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...