Oblique Triangular Prism

Calculus Level 4

In the above Oblique Triangular Prism m A B C = θ m\angle{ABC} = \theta , the lateral faces are parallelograms and the bases are equilateral triangles as shown above, and D E F \triangle{DEF} is a right triangle.

Let the volume and the lateral surface area of the Oblique Triangular Prism be V = b 2 V = b^2 and A = b A = b respectively, where b b is a positive real number.

(1): Find the restriction on b b for which the radius r r minimizes the distance y y .

(2): Find θ \theta in degrees.

If r < α r < \alpha and d < β d < \beta , find α \lfloor{\alpha}\rfloor + β \lfloor{\beta}\rfloor + θ \lfloor{\theta}\rfloor .


The answer is 174.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 13, 2018

V = 3 4 r 2 H = b 2 H = 4 b 2 3 r 2 V = \dfrac{\sqrt{3}}{4} r^2 H = b^2 \implies H = \dfrac{4b^2}{\sqrt{3}r^2} A = 3 r s = b s = b 3 r Y ( r ) = y 2 ( r ) = b 2 3 ( 1 3 r 2 16 b 2 r 4 ) A = 3rs = b \implies s = \dfrac{b}{3r} \implies Y(r) = y^2(r) = \dfrac{b^2}{3}(\dfrac{1}{3 r^2} - \dfrac{16b^2}{r^4}) \implies d Y d r = 2 b 2 3 ( 24 b 2 r 5 1 3 r 3 ) = 2 b 2 9 r 5 ( 72 b 2 r 2 ) = 0 r = 6 2 b \dfrac{dY}{dr} = \dfrac{2b^2}{3}(\dfrac{24 b^2}{r^5} - \dfrac{1}{3r^3}) = \dfrac{2b^2}{9r^5}(72 b^2 - r^2) = 0 \implies r = 6\sqrt{2} b for r > 0 H = 1 18 3 r > 0 \implies H = \dfrac{1}{18\sqrt{3}} and s = 1 18 2 y = s 2 H 2 = 1 18 6 s = \dfrac{1}{18\sqrt{2}} \implies y = \sqrt{s^2 - H^2} = \dfrac{1}{18\sqrt{6}}

Let λ = m D F E \lambda = m\angle{DFE} .

cos ( λ ) = y s = 1 3 \cos(\lambda) = \dfrac{y}{s} = \dfrac{1}{\sqrt{3}} and cos ( θ ) = cos ( 180 λ ) = cos ( λ ) = 1 3 \cos(\theta) = \cos(180 - \lambda) = -\cos(\lambda) = \dfrac{-1}{\sqrt{3}}

cos ( θ ) = 1 3 θ 125.2643896 8 \boxed{\cos(\theta) = \dfrac{-1}{\sqrt{3}} \implies \theta \approx 125.26438968^\circ}

For r r to minimize y y d 2 Y d r 2 r = 6 2 b > 0 \dfrac{d^2Y}{dr^2}|_{r = 6\sqrt{2}b} > 0 d 2 Y d r 2 r = 6 2 b = 2 b 2 3 ( 72 120 b 2 7 2 3 ) > 0 \implies \dfrac{d^2Y}{dr^2}|_{r = 6\sqrt{2}b} = \dfrac{2b^2}{3}(\dfrac{72 - 120b^2}{72^3}) > 0 b < 3 5 r = 6 2 b < 6 6 5 = α 6.57267 \implies \boxed{b < \sqrt{\dfrac{3}{5}}} \implies \boxed{r = 6\sqrt{2}b < 6\sqrt{\dfrac{6}{5}} = \alpha \approx 6.57267}

d 2 = s 2 + r 2 + 2 s r cos ( λ ) = 1 2 ( 1 8 2 ) + 72 b 2 + 2 b 3 3 < d^2 = s^2 + r^2 +2sr\cos(\lambda) = \dfrac{1}{2(18^2)} + 72b^2 + \dfrac{2b}{3\sqrt{3}} < 1 2 ( 1 8 2 ) + 72 ( 3 5 ) + 2 3 5 = \dfrac{1}{2(18^2)} + 72(\dfrac{3}{5}) + \dfrac{2}{3\sqrt{5}} =

5 5 + 139968 5 + 2160 10 5 ( 18 ) 2 \dfrac{5\sqrt{5} + 139968\sqrt{5} + 2160}{10\sqrt{5}(18)^2} \implies d < 5 5 + 139968 5 + 2160 18 500 = β 43.4996856 \boxed{d < \dfrac{\sqrt{5\sqrt{5} + 139968\sqrt{5} + 2160}}{18\sqrt{500}} = \beta \approx 43.4996856}

α \implies \lfloor{\alpha}\rfloor + β \lfloor{\beta}\rfloor + θ = 174 \lfloor{\theta}\rfloor = \boxed{174}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...