Observe and solve.

Calculus Level 4

Let y ( x ) + y ( x ) g ( x ) = g ( x ) g ( x ) , y ( 0 ) = 0 \displaystyle y'(x)+y(x)g'(x)=g(x)g'(x) ,\quad y(0)=0 where x is real no. , f ( x ) f'(x) denotes d f ( x ) d x \frac{df(x)}{dx} and g ( x ) g(x) is a given non constant differentiable function on R R with g ( 0 ) = g ( 2 ) = 0 g(0)= g(2) = 0 . Then the value of y ( 2 ) y(2) is

This problem is a part of the set advanced is basic


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Mark Hennings
Dec 28, 2015

Solve the equation fully, using an integrating factor. d y d x + d g d x y = g d g d x e g d y d x + e g d g d x y = g e g d g d x d d x ( e g y ) = g e g d g d x = d d x ( ( g 1 ) e g ) e g y = ( g 1 ) e g + c y = g 1 + c e g \begin{array}{rcl} \dfrac{dy}{dx} + \dfrac{dg}{dx}y & = & g\dfrac{dg}{dx} \\ e^g \dfrac{dy}{dx} + e^g \dfrac{dg}{dx} y & =& ge^g \dfrac{dg}{dx} \\ \dfrac{d}{dx}\big(e^g y\big) & = & ge^g \dfrac{dg}{dx} \; = \; \dfrac{d}{dx}\big((g-1)e^g\big) \\ e^g y & = & (g-1)e^g + c \\ y & = & g - 1 + ce^{-g} \end{array} Since y ( 0 ) = g ( 0 ) = 0 y(0) = g(0) = 0 , we deduce that c = 1 c=1 , and hence y ( x ) = g ( x ) 1 + e g ( x ) y(x) \,=\, g(x) - 1 + e^{-g(x)} . Since g ( 2 ) = 0 g(2) = 0 , we therefore deduce that y ( 2 ) = 0 y(2) = 0 .

@Mark Hennings Can you please tell whether this question can be solved using complex analysis? Thanks.

Samuel Jones - 5 years, 1 month ago
Ashutosh Sharma
Jan 30, 2018

for ease of solving assume y(X) and g(X) as y and x respectively.now divide by g'(X) so now whole equation changes to first order diffrential equation as shown below. (dy/dx)+y=x .on solving we get y(e^x)=(x)(e^x)-(e^x)+C. replace y(X) and g(X) as y and x respectively and put X =0 to find C..and thus the required value :-)

L N
Dec 26, 2015

Consider: y ( x ) = g ( x ) g ( x ) y ( x ) g ( x ) y'(x) = g(x)g'(x) - y(x)g'(x) Then factored out g ( x ) g'(x) y ( x ) = g ( x ) ( g ( x ) y ( x ) ) y'(x) = g'(x)(g(x) - y(x)) Then consider when g ( x ) = C y ( x ) g(x) = Cy(x) . This gives: y ( x ) = C g ( x ) y'(x) = Cg'(x) This would imply that y ( x ) y(x) differs from g ( x ) g(x) by some constant factor. Yet, the question asks for y ( 2 ) = C g ( 2 ) = C 0 = 0 y(2) = Cg(2) = C \cdot 0 = 0

Nishu Sharma
May 2, 2015

Trick is to choose suitable function for g ( x ) g(x) which satisfy initial conditions . Hence I chose quadratic polynomial ..

Let g ( x ) = x ( x 2 ) \displaystyle{g\left( x \right) =x(x-2)} , hence given Differential Equation becomes ..

d y d x + ( 2 ( x 1 ) ) y = 2 x ( x 1 ) ( x 2 ) \displaystyle{\cfrac { dy }{ dx } +(2(x-1))y=2x(x-1)(x-2)} , It is Linear Differential equation , hence it's integrating factor is

I F = e 2 ( x 1 ) d x = e ( x 1 ) 2 y e ( x 1 ) 2 = 2 x ( x 1 ) ( x 2 ) e ( x 1 ) 2 d x + c l e t : ( x 1 ) 2 = t 2 ( x 1 ) d x = d t y e ( x 1 ) 2 = ( t + 1 ) ( t 1 ) e t d t + c y e ( x 1 ) 2 = ( t 1 ) e t d t + c y e ( x 1 ) 2 = ( t 2 ) e t + c y = ( ( x 1 ) 2 2 ) + c e ( x 1 ) 2 y ( 0 ) = 0 c = e 1 y = ( ( x 1 ) 2 2 ) + e ( x 1 ) 2 1 y ( 2 ) = 0 \displaystyle{IF={ e }^{ \int { 2(x-1)dx } }={ e }^{ { (x-1) }^{ 2 } }\\ y{ e }^{ { (x-1) }^{ 2 } }=\int { 2x(x-1)(x-2){ e }^{ { (x-1) }^{ 2 } } } dx\quad +c\\ let:\\ { (x-1) }^{ 2 }=t\quad \Rightarrow 2(x-1)dx=dt\\ y{ e }^{ { (x-1) }^{ 2 } }=\int { (\sqrt { t } +1)(\sqrt { t } -1){ e }^{ t } } dt\quad +c\\ y{ e }^{ { (x-1) }^{ 2 } }=\int { (t-1{ )e }^{ t } } dt\quad +c\\ y{ e }^{ { (x-1) }^{ 2 } }=(t-2{ )e }^{ t }\quad +c\\ y=({ (x-1) }^{ 2 }-2)+c{ e }^{ { (x-1) }^{ 2 } }\\ y(0)=0\quad \Rightarrow \boxed { c={ e }^{ -1 } } \\ \boxed { y=({ (x-1) }^{ 2 }-2)+{ e }^{ { (x-1) }^{ 2 }-1 } } \\ \boxed { y(2)=0 } }

You can solve it without choosing a function as well. just use d ( y ( x ) d ( g ( x ) \frac{d(y(x)}{d(g(x)} . Otherwise it's the same . Good Work ! Upvoted. :)

Keshav Tiwari - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...