OCR A Level: Core 3 - Modulus [January 2013 Q3]

Algebra Level 3

( a ) (\textbf{a}) Given that t = 3 |t|=3 , find the possible values of 2 t 1 |2t-1| .

( b ) (\textbf{b}) Solve the inequality x 2 > x + 3 2 |x-\sqrt2|>|x+3\sqrt2| .


Let the two possible values of 2 t 1 |2t-1| be y y and z z , and let x m i n x_{min} be the minimum value that x x does not satisfy.

Input x m i n 2 + y + z x_{min}^2+y+z as your answer.


There are 3 marks available for part (a) and 4 marks for part (b).
In total, this question is worth 9.72% of all available marks in the paper.

This is part of the set OCR A Level Problems .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Part (a):

t = 3 t = { + 3 3 2 t 1 = { 2 ( + 3 ) 1 = 5 = y 2 ( 3 ) 1 = 7 = z |t| = 3 \quad \Rightarrow t = \begin{cases} +3 \\ -3 \end{cases} \quad \Rightarrow |2t -1| = \begin{cases} |2(+3)-1| = 5 \quad \color{#3D99F6}{=y} \\ |2(-3)-1| = 7 \quad \color{#3D99F6}{=z} \end{cases}

Part (b):

{ x 2 = { x 2 for x 2 2 x for x < 2 x + 3 2 = { x + 3 2 for x 3 2 x 3 2 for x < 3 2 \begin{cases} |x-\sqrt{2}| & = \begin{cases} x - \sqrt{2} & \quad \space \text{for } x \ge \sqrt{2} \\ \sqrt{2} -x & \quad \space \text{for } x < \sqrt{2} \end{cases} \\ |x+3\sqrt{2}| & = \begin{cases} x + 3\sqrt{2} & \text{for } x \ge -3\sqrt{2} \\ - x -3 \sqrt{2} & \text{for } x < -3\sqrt{2} \end{cases} \end{cases}

There are 3 3 cases:

x < 3 2 : 2 x > x 3 2 No solution 3 2 x < 2 : 2 x > x + 3 2 2 x < 2 2 x < 2 = x m i n x 2 : x 2 > x + 3 2 No solution \begin{aligned} x < -3 \sqrt{2}: \quad \sqrt{2} -x & > - x - 3\sqrt{2} \quad \small \color{#D61F06}{\text{No solution}} \\ -3 \sqrt{2} \le x < \sqrt{2}: \quad \sqrt{2} -x & > x + 3\sqrt{2} \\ 2x & < - 2\sqrt{2} \\ \Rightarrow x & < -\sqrt{2} \quad \quad \space \space \space \color{#3D99F6}{ = x_{min}} \\ x \ge \sqrt{2}: \quad x - \sqrt{2} & > x + 3\sqrt{2} \quad \space \space \small \color{#D61F06}{\text{No solution}} \end{aligned}

Therefore, x m i n 2 + y + z = 2 + 5 + 7 = 14 x_{min}^2 + y + z = 2 + 5 + 7 = \boxed{14}

Same solution !!

Aakash Khandelwal - 5 years, 3 months ago
Michael Fuller
Mar 8, 2016

The mark scheme for this question: Large Version

Same Method Yay! :P

Mehul Arora - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...