( i ) Prove that cos 2 ( θ + 4 5 ° ) − 2 1 ( cos 2 θ − sin 2 θ ) ≡ sin 2 θ .
( ii ) Hence solve 6 cos 2 ( 2 θ + 4 5 ° ) − 3 ( cos θ − sin θ ) = 2 for − 9 0 ° < θ < 9 0 ° .
( iii ) It is given that there are two values of θ , where − 9 0 ° < θ < 9 0 ° , satisfying 6 cos 2 ( 3 θ + 4 5 ° ) − 3 ( cos 3 2 θ − sin 3 2 θ ) = k .
Find the set of possible values for k .
If a < k < c b where a , b and c are integers with b and c coprime, input a + b + c as your answer.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
( i ) C o s 2 ( θ + 4 5 ° ) − 2 1 ( C o s 2 θ − S i n 2 θ ) = ( S i n θ ∗ S i n 4 5 − C o s θ ∗ C o s 4 5 ) 2 − 2 1 ( C o s 2 θ − S i n 2 θ ) = ( 2 1 ∗ ( C o s θ − S i n θ ) 2 − 2 1 ( C o s 2 θ − S i n 2 θ ) = 2 1 ∗ ( 1 − S i n 2 θ ) − 2 1 ∗ C o s 2 θ + 2 1 ∗ S i n 2 θ ) = 2 1 − 2 1 ∗ ( 2 C o s 2 θ − 1 ) = 1 − C o s 2 θ ≡ S i n 2 θ ( i i ) F r o m ( i ) a b o v e 6 cos 2 ( 2 θ + 4 5 ° ) − 3 ( cos θ − sin θ ) = 2 ⟹ 6 S i n 2 2 θ = 2 S i n 2 θ = ± 3 1 . ∴ θ = ± ( 2 ∗ 3 5 . 2 6 4 ) = 7 0 . 5 2 8 o .
( i i i ) − 9 0 ° < θ < 9 0 ° , ∴ − 3 0 o < 3 θ < 3 0 o . . . . . . . . . . . . . . . . ( ∗ ∗ ∗ ) F r o m ( i i ) a b o v e 6 C o s 2 ( 3 θ + 4 5 ° ) − 3 ( C o s 3 2 θ − S i n 3 2 θ ) = k ⟹ S i n 2 3 θ = 6 1 ∗ k . ∴ S i n 3 θ = ± 6 1 ∗ k B u t f r o m ( ∗ ∗ ∗ ) S i n ( − 3 0 ) < 3 θ < S i n 3 0 ⟹ − 2 1 < ± 3 θ < 2 1 k c a n n o t b e n e g a t i v e ∴ 0 < 6 k < 2 1 ⟹ 0 < k < 4 6 = 3 2 . ∴ a + b + c = 0 + 2 + 3 = 5 .
The inequality between. K and 0 must be slack for 0 is very much an attainable minima, occurring at theta = 0
Problem Loading...
Note Loading...
Set Loading...
The mark scheme for this question: Large Version