OCR A Level: Core 3 - Trigonometry [January 2013 Q9]

Geometry Level 4

( i ) (\text{i}) Prove that cos 2 ( θ + 45 ° ) 1 2 ( cos 2 θ sin 2 θ ) sin 2 θ . \cos^2{(\theta + 45°)}-\dfrac{1}{2}(\cos 2 \theta - \sin 2 \theta) \equiv \sin^2 \theta .

( ii ) (\text{ii}) Hence solve 6 cos 2 ( θ 2 + 45 ° ) 3 ( cos θ sin θ ) = 2 6\cos^2{ \left ( \dfrac{\theta}{2} + 45° \right )}-3(\cos \theta - \sin \theta) = 2 for 90 ° < θ < 90 ° -90°< \theta < 90° .

( iii ) (\text{iii}) It is given that there are two values of θ \theta , where 90 ° < θ < 90 ° -90°< \theta < 90° , satisfying 6 cos 2 ( θ 3 + 45 ° ) 3 ( cos 2 θ 3 sin 2 θ 3 ) = k . 6\cos^2{\left (\frac{\theta}{3} + 45°\right )}-3\left (\cos \frac{2 \theta}{3} - \sin \dfrac{2 \theta}{3} \right ) = k.

Find the set of possible values for k k .


If a < k < b c a<k<\dfrac{b}{c} where a a , b b and c c are integers with b b and c c coprime, input a + b + c a+b+c as your answer.


There are 4 marks available for part (i), 3 marks for part (ii) and 3 marks for part (iii).
In total, this question is worth 13.9% of all available marks in the paper.

This is part of the set OCR A Level Problems .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Michael Fuller
Mar 9, 2016

The mark scheme for this question: Large Version

( i ) C o s 2 ( θ + 45 ° ) 1 2 ( C o s 2 θ S i n 2 θ ) = ( S i n θ S i n 45 C o s θ C o s 45 ) 2 1 2 ( C o s 2 θ S i n 2 θ ) = ( 1 2 ( C o s θ S i n θ ) 2 1 2 ( C o s 2 θ S i n 2 θ ) = 1 2 ( 1 S i n 2 θ ) 1 2 C o s 2 θ + 1 2 S i n 2 θ ) = 1 2 1 2 ( 2 C o s 2 θ 1 ) = 1 C o s 2 θ S i n 2 θ \ \ (i)\\ Cos^2(\theta + 45°)-\dfrac1 2(Cos 2 \theta - Sin 2 \theta)\\ =(Sin \theta*Sin45-Cos\theta*Cos45)^2 - \dfrac1 2(Cos 2 \theta - Sin 2 \theta)\\ =(\dfrac 1 {\sqrt2}*(Cos\theta - Sin\theta)^2 - \dfrac1 2(Cos 2 \theta - Sin 2 \theta)\\ =\frac 1 2*(1 - \color{#3D99F6}{Sin2\theta)} - \frac 1 2 *Cos2\theta +\frac 1 2 *\color{#3D99F6}{Sin2\theta)} \\ = \frac 1 2 - \frac 1 2 *(2Cos^2\theta-1)=1- Cos^2\theta\\ \equiv Sin^2\theta\ \boxed{ } \\ ~~~\\ ( i i ) F r o m ( i ) a b o v e 6 cos 2 ( θ 2 + 45 ° ) 3 ( cos θ sin θ ) = 2 6 S i n 2 θ 2 = 2 S i n θ 2 = ± 1 3 . θ = ± ( 2 35.264 ) = 70.52 8 o . \ \ (ii)\\ From\ (i)\ above\ \ 6\cos^2{ \left ( \dfrac{\theta}{2} + 45° \right )}-3(\cos \theta - \sin \theta) = 2\\ \implies \ 6Sin^2\dfrac \theta 2=2\\ Sin\dfrac \theta 2=\pm \sqrt{\frac 1 3}.\\ \therefore\ \theta=\pm(2*35.264)=70.528^o.\\~~~~\\

( i i i ) 90 ° < θ < 90 ° , 3 0 o < θ 3 < 3 0 o . . . . . . . . . . . . . . . . ( ) F r o m ( i i ) a b o v e 6 C o s 2 ( θ 3 + 45 ° ) 3 ( C o s 2 θ 3 S i n 2 θ 3 ) = k S i n 2 θ 3 = 1 6 k . S i n θ 3 = ± 1 6 k B u t f r o m ( ) S i n ( 30 ) < θ 3 < S i n 30 1 2 < ± θ 3 < 1 2 k c a n n o t b e n e g a t i v e 0 < k 6 < 1 2 0 < k < 6 4 = 2 3 . a + b + c = 0 + 2 + 3 = 5. \ \ (iii)\\ -90°< \theta < 90°, \ \ \therefore\ - 30^o<\dfrac \theta 3 < 30^o................(***)\\ From\ (ii)\ above\ \ 6Cos^2{\left (\frac{\theta}{3} + 45°\right )}-3\left (Cos \frac{2 \theta}{3} - Sin \frac{2 \theta}{3} \right ) = k\\ \implies\ Sin^2\dfrac \theta 3=\dfrac 1 6 *k.\\ \therefore\ Sin\dfrac \theta 3=\pm \sqrt{\dfrac 1 6 *k}\\ But\ from\ (***)\ Sin( - 30)<\dfrac \theta 3 < Sin30\ \ \implies\ \ - \frac 1 2<\pm\ \dfrac \theta 3 <\frac 1 2\\ k\ can\ not\ be\ negative\ \ \therefore 0<\sqrt{\dfrac k 6}<\frac 1 2\\ \implies\ 0<k<\dfrac 6 4=\frac 2 3.\\ \therefore\ a+b+c=0+2+3=5.

Aditya Dhawan
Nov 2, 2016

The inequality between. K and 0 must be slack for 0 is very much an attainable minima, occurring at theta = 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...