OCR A Level: Core 3 - Iteration [June 2007 Q6]

Calculus Level 3

( i ) (\text{i}) Given 0 a 6 e 2 x + x d x = 42 \displaystyle \int _{ 0 }^{ a }{ 6{ e }^{ 2x }+x } \, dx=42 , show that a = 1 2 ln ( 15 a 2 6 ) . a=\dfrac{1}{2}\ln\left (15-\dfrac{a^2}{6}\right ).

( ii ) (\text{ii}) Use an iterative formula to find a a , correct to 3 decimal places . Use a starting value of 1 and show the result of each iteration.


Input 1000 × 1000 \times your answer to part ( ii ) (\text{ii}) .


There are 5 marks available for part (i) and 4 marks for part (ii).
In total, this question is worth 12.5% of all available marks in the paper.

This is part of the set OCR A Level Problems .


The answer is 1344.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Fuller
Feb 29, 2016

Marks for part ( i ) (\text{i}) :

M1 \color{#3D99F6}{\boxed{\text{M1}}} Obtain integral of form k 1 e 2 x + k 2 x 2 k_1 e^{2x} + k_2 x^2 .

A1 \color{#20A900}{\boxed{\text{A1}}} Obtain correct 3 e 2 x + 1 2 x 2 3 e^{2x} + \dfrac{1}{2} x^2 .

A1 \color{#20A900}{\boxed{\text{A1}}} Obtain 3 e 2 a + 1 2 a 2 3 3 e^{2a} + \dfrac{1}{2} a^2 - 3 .

M1 \color{#3D99F6}{\boxed{\text{M1}}} Equate definite integral to 42 and attempt rearrangement.

A1 \color{#20A900}{\boxed{\text{A1}}} Confirm a = 1 2 ln ( 15 a 2 6 ) a=\dfrac{1}{2}\ln\left (15-\dfrac{a^2}{6}\right ) .


Marks for part ( ii ) (\text{ii}) :

B1 \color{#69047E}{\boxed{\text{B1}}} Obtain correct first iterate 1.3848...

M1 \color{#3D99F6}{\boxed{\text{M1}}} Attempt correct process to find at least 2 iterates.

A1 \color{#20A900}{\boxed{\text{A1}}} Obtain at least 3 correct iterates.

A1 \color{#20A900}{\boxed{\text{A1}}} Obtain 1.344.

[ 1 1.34844 1.34382 1.34389 ] [1 \rightarrow 1.34844 \rightarrow 1.34382 \rightarrow 1.34389 ]

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...